В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
egoroff1271
egoroff1271
14.04.2022 16:11 •  Алгебра

Решить, , нужно найти наибольшее значение и указать при как х значений переменных оно достигается. любой либо а), либо б).

Показать ответ
Ответ:
nargizdjgalova
nargizdjgalova
03.08.2021 19:05
1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 + 4 
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0] .

 y= x³ - 3x² + 4 
1.Область определения функции D(f)  =   (-∞; ∞).
2. Определяем точки пересечения графики функции с координатными осями 
a) c осью абсцисс : y =0   ⇒  x³ - 3x² + 4  =0 , x =  -1 корень 
(x³+x²) - (4x²+4x) +(4x+4) = 0 ;
x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)²  =0→
A(-1 ;0) ; B(2 ;0).
b) с осью ординат:  x =0   ⇒ y = 4  → C(0 ;4).
3.Определяем интервалы монотонности функции 
Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0.
y ' =3x² -6x  =3x(x-2) ; 
y '    +                     -                      +
 0  2
y     ↑      max         ↓          min         ↑

x =0 точка максимума _ мах (у) = 4
x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0 
Функция возрастает , если x ∈(-∞ ; 0) и  x ∈(2 ;∞ ),  
убывает ,если  x ∈ (0 ;2 ).
---
4)
определим точки перегиба , интервалы  выпуклости и вогнутости
y '' = (y ') '  =(3x² -6x) ' = 6x -6=6(x -1).
y '' =0 ⇒   x=1 (единственная точка перегиба)
График функции  выпуклая , если   y ''< 0 , т.е.  если x < 1 
вогнутая, если  y '' >0 ⇔ x > 1

5. Lim y  → - ∞    ;     Lim y  →  ∞
   x→ - ∞                      x→ ∞ 
* * * * * * * * *
2.
Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0]

f(x)=(x+1)² (x-1)
f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3)
f'(x)      +                  -                           +
(-1) (1/3)  (1/3)  ∉   [-2 ;0]
f(x)     ↑      max         ↓          min         ↑ 

f(-2) =(-2+1)²( -2-1) = -3 ;
f(-1) =(-1+1)²( -2-1) = 0 ;
f(0)  =(0+1)²(0 -1) = -1 ;

наибольшее  значении функции на данном промежутке: max f(x)=f(-1) =0 ;
наименьшее значении функции_minf(x)=f(-2) = -3 .
0,0(0 оценок)
Ответ:
ааааааспасите
ааааааспасите
03.08.2021 19:05
1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 + 4 
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0] .

 y= x³ - 3x² + 4 
1.Область определения функции D(f)  =   (-∞; ∞).
2. Определяем точки пересечения графики функции с координатными осями 
a) c осью абсцисс : y =0   ⇒  x³ - 3x² + 4  =0 , x =  -1 корень 
(x³+x²) - (4x²+4x) +(4x+4) = 0 ;
x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)²  =0→
A(-1 ;0) ; B(2 ;0).
b) с осью ординат:  x =0   ⇒ y = 4  → C(0 ;4).
3.Определяем интервалы монотонности функции 
Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0.
y ' =3x² -6x  =3x(x-2) ; 
y '    +                     -                      +
 0  2
y     ↑      max         ↓          min         ↑

x =0 точка максимума _ мах (у) = 4
x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0 
Функция возрастает , если x ∈(-∞ ; 0) и  x ∈(2 ;∞ ),  
убывает ,если  x ∈ (0 ;2 ).
---
4)
определим точки перегиба , интервалы  выпуклости и вогнутости
y '' = (y ') '  =(3x² -6x) ' = 6x -6=6(x -1).
y '' =0 ⇒   x=1 (единственная точка перегиба)
График функции  выпуклая , если   y ''< 0 , т.е.  если x < 1 
вогнутая, если  y '' >0 ⇔ x > 1

5. Lim y  → - ∞    ;     Lim y  →  ∞
   x→ - ∞                      x→ ∞ 
* * * * * * * * *
2.
Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0]

f(x)=(x+1)² (x-1)
f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3)
f'(x)      +                  -                           +
(-1) (1/3)  (1/3)  ∉   [-2 ;0]
f(x)     ↑      max         ↓          min         ↑ 

f(-2) =(-2+1)²( -2-1) = -3 ;
f(-1) =(-1+1)²( -2-1) = 0 ;
f(0)  =(0+1)²(0 -1) = -1 ;

наибольшее  значении функции на данном промежутке: max f(x)=f(-1) =0 ;
наименьшее значении функции_minf(x)=f(-2) = -3 .
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота