1-е число равно 2, 3-е число равно 0.4.
Объяснение:
Обозначим через x1 первое число из трех данных чисел.
В исходных данных к данному заданию сообщается, что 1-е число впятеро больше, чем 3-е, следовательно, 3-е число должно составлять х1/5.
Также известно, что три данных числа являются арифметической прогрессией.
Следовательно, полусумма 1-го и 3-го чисел должна быть равна 2-му числу и мы можем составить следующее уравнение:
(х1 + х1/5) / 2 = 1.2,
решая которое, получаем:
(6х1/5) / 2 = 1.2;
3х1/5 = 1.2;
х1/5 = 1.2 / 3;
х1/5 = 0.4;
х1 = 0.4 * 5 = 2.
Находим 3-е число:
х1/5 = 2/5 = 0.4.
1-е число равно 2, 3-е число равно 0.4.
Объяснение:
Обозначим через x1 первое число из трех данных чисел.
В исходных данных к данному заданию сообщается, что 1-е число впятеро больше, чем 3-е, следовательно, 3-е число должно составлять х1/5.
Также известно, что три данных числа являются арифметической прогрессией.
Следовательно, полусумма 1-го и 3-го чисел должна быть равна 2-му числу и мы можем составить следующее уравнение:
(х1 + х1/5) / 2 = 1.2,
решая которое, получаем:
(6х1/5) / 2 = 1.2;
3х1/5 = 1.2;
х1/5 = 1.2 / 3;
х1/5 = 0.4;
х1 = 0.4 * 5 = 2.
Находим 3-е число:
х1/5 = 2/5 = 0.4.
b6=0.81*(-q)^5
2.b1=6; q=2. Найти S(7)
S(7)=6(2^7-1)/(2-1)=762
3. b1=-40; b2=-20; b3=-10. Найти сумму n членов бесконечной прогрессии.
q=-20/-40=-10/-20=0.5
S(n)=-40(0.5^n-1)/(0.5-1)
S(n)=(80*0.5^n)-80
4. b2=1.2; b4=4.8. Найти S(8)
(b3)^2=1.2*4.8=5.76
b3=√5.76=2.4
q=4.8/2.4=2.4/1.2=2
b1=1.2/2=0.6
S(8)=0.6(2^8-1)/(2-1)
S(8)=153
5. Представить в виде обыкновенной дроби бесконечную периодическую дробь.
a) 0.(153)
k=3
m=0
a=153
b=0
0+(153-0)/999=153/999=51/333=17/111
b) 0.3(2)
k=1
m=1
a=32
b=3
0+((32-3)/90)=29/90