Первое действие в скобках - деление, потом в скобках вычитание. Потом за скобкой умножаем и выполняем вычитание. 1) 2 целых 2/3:1,2= 2 целых 2/3:1 целая 2/10= (переводим в обыкновенную дробь) 8/3:12/10= (вторая дробь переворачивается) (8*10)/(3*12)=80/36=(сокращаем на 4) 20/9=2 целых 2/9 2) 2 целых 2/9-2= 2/9 3) 2/9*6 целых 3/4=( переводим в обыкновенную дробь) 2/9*27/4=2*27/9*4= (сокращаем 2 и 4 на 2 - остается от 2 один, от 4 два; сокращаем 27 и 9 на 9, от 27 остается 3, от 9 остается 1)= 1*3/1*2=3/2=1 целая 1/2 4) 1 целая 1/2-5,5= (переводим из десятичной в смешанную дробь)= 1 целая 1/2-5 целых 5/10=(сокращаем дробь) 1 целая 1/2-5 целых 1/2= (переводим смешанные дроби в обыкновенные) 3/2-11/2= 3-11/2=-8/2=(сокращаем на два)=-4
Первое число, кратное 6 и большее 100 - это число 102.
Можно рассматривать последовательность этих чисел как арифметическую прогрессию, у которой а₁ = 102, разность d = 6.
Найдем количество элементов последовательности n.
Формула n-го члена арифметической прогрессии an = а₁ + d(n - 1).
an < 200, поэтому решим неравенство а₁ + d(n - 1) < 200 и найдем n:
102 + 6 · (n - 1) < 200,
102 + 6n - 6 < 200,
6n + 96 < 200,
6n < 200 - 96,
6n < 104,
n < 17 целых 2/6, т.е. n < 17 целых 1/3. Значит, n = 17.
Формула суммы n первых членов арифметической прогрессии:
Sn = (2а₁ + d(n - 1))/2 · n.
S₁₇ = (2 · 102 + 6 · 16)/2 · 17 = (204 + 96)/2 · 17 = 300/2 · 17 = 150 · 17 = 2550.
ответ: 2550.
1) 2 целых 2/3:1,2= 2 целых 2/3:1 целая 2/10= (переводим в обыкновенную дробь) 8/3:12/10= (вторая дробь переворачивается) (8*10)/(3*12)=80/36=(сокращаем на 4) 20/9=2 целых 2/9
2) 2 целых 2/9-2= 2/9
3) 2/9*6 целых 3/4=( переводим в обыкновенную дробь) 2/9*27/4=2*27/9*4= (сокращаем 2 и 4 на 2 - остается от 2 один, от 4 два; сокращаем 27 и 9 на 9, от 27 остается 3, от 9 остается 1)= 1*3/1*2=3/2=1 целая 1/2
4) 1 целая 1/2-5,5= (переводим из десятичной в смешанную дробь)= 1 целая 1/2-5 целых 5/10=(сокращаем дробь) 1 целая 1/2-5 целых 1/2= (переводим смешанные дроби в обыкновенные) 3/2-11/2= 3-11/2=-8/2=(сокращаем на два)=-4