Пусть х - длина, га которую увеличили длину и ширину прямоугольника. х > 0, поскольку стороны прямоугольника увеличили. Тогда 2+х - новая ширина. 4+х - новая длина. 2•4 - площадь исходного прямоугольника. (2+х)(4+х) - площадь нового увеличенного прямоугольника. 1) Уравнение: (2+х)(4+х) = 3(2•4) 8 + 4х + 2х + х^2 = 24 х^2 + 6х + 8 - 24 = 0 х^2 + 6х - 16 = 0 Дискриминант = корень из ( 6^2 + 4•16) = = корень из (36+64) = корень из 100 = 10 х1 = (-6+10)/2=4/2=2 х2 = (-6-10/2 = -16/2=-8 - не подходить, поскольку х>0. 2) 2+2=4 м - ширина нового прямоугольника. 3) 4+2=6 м - длина нового прямоугольника.
ответ: 4 м; 6 м.
Проверка: 1) 2•4=8 кв.м - площадь исходного прямоугольника. 2) 4•6=24 кв.м - площадь нового прямоугольника. 3) 24:8=3 раза- во столько раз увеличилась площадь прямоугольника.
х > 0, поскольку стороны прямоугольника увеличили.
Тогда 2+х - новая ширина.
4+х - новая длина.
2•4 - площадь исходного прямоугольника.
(2+х)(4+х) - площадь нового увеличенного прямоугольника.
1) Уравнение:
(2+х)(4+х) = 3(2•4)
8 + 4х + 2х + х^2 = 24
х^2 + 6х + 8 - 24 = 0
х^2 + 6х - 16 = 0
Дискриминант = корень из ( 6^2 + 4•16) =
= корень из (36+64) = корень из 100 = 10
х1 = (-6+10)/2=4/2=2
х2 = (-6-10/2 = -16/2=-8 - не подходить, поскольку х>0.
2) 2+2=4 м - ширина нового прямоугольника.
3) 4+2=6 м - длина нового прямоугольника.
ответ: 4 м; 6 м.
Проверка:
1) 2•4=8 кв.м - площадь исходного прямоугольника.
2) 4•6=24 кв.м - площадь нового прямоугольника.
3) 24:8=3 раза- во столько раз увеличилась площадь прямоугольника.
ответ:ешим уравнение и найдем корень уравнения:
sin^2 x + 2 * sin x * cos x - 3 * cos^2 x = 0;
Делим уравнение на cos^2 x.
sin^2 x/cos^2 x + 2 * sin x * cos x/cos^2 x - 3 * cos^2 x/cos^2 x = 0;
(sin x/cos x)^2 + 2 * (sin x/cos x) - 3 * 1 = 0;
tg^2 x + 2 * tg x - 3 = ;
Найдем дискриминант квадратного уравнения:
D = 4 - 4 * 1 * (-3) = 16;
tg x1 = (-2 + 4)/2 = 2/2 = 1;
tg x2 = (-2 - 4)/2 = -6/2 = -3;
1) tg x = 1;
x = arctg (1) + pi * n, где n принадлежит Z;
x = pi/4 + pi * n, где n принадлежит Z;
2) tg x= -3;
x = arctg (-3) + pi * n, где n принадлежит Z;
x = -arctg (3) + pi * n, где n принадлежит Z.
Объяснение: