решить Основание наклонной призмы лежит прямоугольный треугольник с катетами 4 и 6 см решить Основание наклонной призмы лежит прямоугольный треугольник с катетами 4 и ">
Ттебе как надо решать на падобии: пример 2. решить неравенстворешение. точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.1) при выполняется , и неравенство имеет вид , то есть . в этом случае ответ .2) при выполняется , неравенство имеет вид , то есть . это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .3) при выполняется , неравенство преобразуется к , и решение в этом случае . общее решение неравенства объединение трех полученных ответов.ответ. .
Получаем X^2 -4,5x-3 ≤ (5-2.5x)*1
X^2 -4,5x-3-5+2.5x≤0
X^2 -2x-8≤0
Находим критические точки.
Решаем уравнение x^2-2*x-8=0:
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
График функции у=x^2-2*x-8 это парабола ветвями вверх.
Значения, равные и меньше нуля, находятся между полученными точками:
-2 ≤ х ≤ 4.