1. кор(3-х) - х - 3 = 0
кор(3-х) = х+3 х прин [-3; 3].
3-х =x^2+6x+9
x^2 + 7x + 6 = 0
x1 = -6 (не подходит)
х2 = -1
ответ: -1
2. x^2 + 3x + 1 = y
y^2 + 3y + 1 = x Вычтем из первого второе и разложим на множители:
(х-у)(х+у+4) = 0
Разбиваем на две подсистемы:
х=у и: у = -х-4
x^2 + 3x + 1 = x x^2 + 3x + 1 = -x-4
x = y = -1
(x+1)^2 = 0 x^2 + 4x + 5 = 0
D<0 нет решений.
ответ: (-1; -1).
1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
y0=-9+5+18=14
значит а [0;14]
2) sqrt(x-1)=a+x x>=1
x-1=x^2+a^2+2ax
x^2+(2a-1)x+a^2+1=0
D>0 (2a-1)^2-4a^2-4>0 -4a-3>0 a<-3/4
3) 4x^2-15x+4a^3=0
x1=x2^2
x1*x2=a^3
x2^3=a^3 x2=a
15/4=x1+x2 15/4=a^2+a
4a^2+4a-15=0 a1=3/2 a2=-5/2
x^2-ax+(a-1)=0
x1^2+x2^2=(x1+x2)^2-2x1x2=17
a^2-2(a-1)=17
a^2-2a-15=0
a1=5 a2=-3
1. кор(3-х) - х - 3 = 0
кор(3-х) = х+3 х прин [-3; 3].
3-х =x^2+6x+9
x^2 + 7x + 6 = 0
x1 = -6 (не подходит)
х2 = -1
ответ: -1
2. x^2 + 3x + 1 = y
y^2 + 3y + 1 = x Вычтем из первого второе и разложим на множители:
(х-у)(х+у+4) = 0
Разбиваем на две подсистемы:
х=у и: у = -х-4
x^2 + 3x + 1 = x x^2 + 3x + 1 = -x-4
x = y = -1
(x+1)^2 = 0 x^2 + 4x + 5 = 0
D<0 нет решений.
ответ: (-1; -1).
1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
y0=-9+5+18=14
значит а [0;14]
2) sqrt(x-1)=a+x x>=1
x-1=x^2+a^2+2ax
x^2+(2a-1)x+a^2+1=0
D>0 (2a-1)^2-4a^2-4>0 -4a-3>0 a<-3/4
3) 4x^2-15x+4a^3=0
x1=x2^2
x1*x2=a^3
x2^3=a^3 x2=a
15/4=x1+x2 15/4=a^2+a
4a^2+4a-15=0 a1=3/2 a2=-5/2
x^2-ax+(a-1)=0
x1^2+x2^2=(x1+x2)^2-2x1x2=17
a^2-2(a-1)=17
a^2-2a-15=0
a1=5 a2=-3