Пусть катеты a и bа/b=3/4a=3b/4пусть меньший отрезок, на которые делит высота гипотенузу равен x тогда второая x+14по теореме высота h^2=x(x+14)по теореме пифагора a^2=x^2+h^2=x^2+x(x+14)=2x^2+14xснова по теореме пифагора: b^2=h^2+(x+14)^2=x(x+14)+(x+14)^2=x^2+14x+x^2+28x+196=2x^2+42x+196но так как мы сказали что a=3b/4 => a^2=9b^2/16=9(2x^2+42x+196)/169(2x^2+42x+196)/16=2x^2+14x9(2x^2+42x+196)=32x^2+224x18x^2+378x+1764=32x^2+224x-14x^2+154x+1764=014x^2-154x-1764=0x^2-11x-126=0x=18 осталось найти a и b и найти площадь
Они встретятся тогда, когда между ними будет ровно круг. Т.е. велосипедист обгонит пешехода на ДЛИНУ КРУГА. L - длина круга, тогда 1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг 0.6vt=L vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга для второго обгона: 1,6vt-vt=2L vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
L - длина круга, тогда
1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг
0.6vt=L
vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга
для второго обгона:
1,6vt-vt=2L
vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
с четвертого раза всё повторяется
ОТВЕТ: 3 точки