Y = x³ - 6x² - 15x - 2 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 12x - 15 Находим нули функции. Для этого приравниваем производную к нулю 3x² - 12x - 15 = 0 Откуда: x₁ = -1 x₂ = 5 (-∞ ;-1) f'(x) > 0 функция возрастает (-1; 5) f'(x) < 0 функция убывает (5; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума. В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 12x - 15
Находим нули функции. Для этого приравниваем производную к нулю
3x² - 12x - 15 = 0
Откуда:
x₁ = -1
x₂ = 5
(-∞ ;-1) f'(x) > 0 функция возрастает
(-1; 5) f'(x) < 0 функция убывает
(5; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума.
В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
В решении.
Объяснение:
d) |4 - x| < 5
Схема:
4 - x < 5; 4 - x > -5
-x < 5 - 4 -x > -5 - 4
-x < 1 -x > -9
x > -1 x < 9
(знак неравенства меняется при умножении или делении на минус).
Решение неравенства: х∈(-1; 9).
Неравенство строгое, скобки круглые.
е) |3x - 9| + 2 > 7
|3x - 9| > 7 - 2
|3x - 9| > 5
Схема:
3x - 9 > 5 3x - 9 < -5
3x > 5 + 9 3x < -5 + 9
3x > 14 3x < 4
x > 14/3 x < 4/3
Решение неравенства: (-∞; 4/3)∪(14/3; +∞).
Неравенство строгое, скобки круглые.
f) |3x + 2| - 1 >= 10
|3x + 2| >= 10 + 1
|3x + 2| >= 11
Схема:
3x + 2 >= 11 3x + 2 <= -11
3x >= 11 - 2 3x <= -11 - 2
3x >= 9 3x <= -13
x >= 3 x <= -13/3
Решение неравенства: (-∞; -13/3]∪[3; +∞).
Неравенство нестрогое, скобки квадратные, а знаки бесконечности всегда с круглой скобкой.