Решение Треугольник АВС правильный, значит периметр Р = 3*а , 3*а = 18 а = 6 – сторона основания. Точка О является центром вписанной окружноcти с радиусом r = ОN r = a / (2√3) r = 6 / (2√3) = r = 3√3 см Образовались равные треугольники с общим катетом МО и радиусом вписанной окружноcти. (треугольники равны по двум катетам. МО = 9 см Найдём расстояние от вершины М до стороны треугольника АВС Из прямоугольного треугольника по т.Пифагора найдём MN : MN = √(OM2 + ON2) = √(92 + (3√3)2) = = √(81 + 27) = √108 = 6√3 (см) Так как расстояния от вершин до сторон треугольника равны, то MN = 6√3 (см) ответ: 6√3 см
Пусть событие А заключается в том, что объём воды в случайно выбранной бутылке отличается от нормы не более чем на 0,2 л, а событие В - более чем на 0,2 л. Фактически нам нужно найти вероятность события В р(В). По условию, вероятность события А р(А)=0,98. Так как события А и В несовместны и притом образуют полную группу событий, то р(А)+р(В)=1. Отсюда р(В)=1-р(А)=1-0,98=0,02. ответ: 0,02.
№ Д4.11.
Пусть событие А заключается в том, что школьнику достанется задача на тему "формулы приведения", а событие В - в том, что ему достанется задача на тему "универсальная тригонометрическая подстановка", а событие С - в том, что достанется задача на одну из этих тем. Тогда С=А+В, а так как события А и В несовместны, то р(С)=р(А)+р(В)=0,24+0,08=0,32. ответ: 0,32.
№ Д4.12.
Пусть событие А1 заключается в том, что занят первый оператор, событие А2 - второй, событие А3 - третий, а событие В - что заняты все три оператора. Тогда В=А1*А2*А3, а так как по условию события А1, А2 и А3 независимы, то р(В)=р(А1)*р(А2)*р(А3). По условию, р(А1)=р(А2)=р(А3)=0,6, и тогда р(В)=0,6*0,6*0,6=0,216. ответ: 0,216.
Треугольник АВС правильный, значит периметр Р = 3*а ,
3*а = 18 а = 6 – сторона основания.
Точка О является центром вписанной окружноcти
с радиусом r = ОN r = a / (2√3) r = 6 / (2√3) = r = 3√3 см
Образовались равные треугольники с общим катетом МО и радиусом вписанной окружноcти. (треугольники равны по двум катетам.
МО = 9 см
Найдём расстояние от вершины М до стороны треугольника АВС
Из прямоугольного треугольника по т.Пифагора найдём MN :
MN = √(OM2 + ON2) = √(92 + (3√3)2) =
= √(81 + 27) = √108 = 6√3 (см)
Так как расстояния от вершин до сторон треугольника равны,
то MN = 6√3 (см)
ответ: 6√3 см
ответ: 0,02; 0,32; 0,216.
Объяснение:
№ Д4.10.
Пусть событие А заключается в том, что объём воды в случайно выбранной бутылке отличается от нормы не более чем на 0,2 л, а событие В - более чем на 0,2 л. Фактически нам нужно найти вероятность события В р(В). По условию, вероятность события А р(А)=0,98. Так как события А и В несовместны и притом образуют полную группу событий, то р(А)+р(В)=1. Отсюда р(В)=1-р(А)=1-0,98=0,02. ответ: 0,02.
№ Д4.11.
Пусть событие А заключается в том, что школьнику достанется задача на тему "формулы приведения", а событие В - в том, что ему достанется задача на тему "универсальная тригонометрическая подстановка", а событие С - в том, что достанется задача на одну из этих тем. Тогда С=А+В, а так как события А и В несовместны, то р(С)=р(А)+р(В)=0,24+0,08=0,32. ответ: 0,32.
№ Д4.12.
Пусть событие А1 заключается в том, что занят первый оператор, событие А2 - второй, событие А3 - третий, а событие В - что заняты все три оператора. Тогда В=А1*А2*А3, а так как по условию события А1, А2 и А3 независимы, то р(В)=р(А1)*р(А2)*р(А3). По условию, р(А1)=р(А2)=р(А3)=0,6, и тогда р(В)=0,6*0,6*0,6=0,216. ответ: 0,216.