x= (-1)^(n+1) *(π/8) + π*n/2 n∈Z
y = -arctg(√2/2)/5 +π*n/5 n∈Z
Объяснение:
учитывая , что sin(-2x) = -sin(2x)
Сделаем замены :
sin(2x) =a ( -1<=a<=1)
tg(5y) =b
Система принимает вид :
1)a^2 -(3-√2)*b =(3*√2 -1)/2
2)b^2-(3-√2)*a = (3*√2 -1)/2
Вычитаем из уравнения 1 уравнение 2 :
(a^2-b^2) +(3-√2)*(a-b) = 0
(a-b)*(a+b +3-√2) =0
1. b=a
Подставим в уравнение 1 :
a^2 -(3-√2)*a =(3*√2 -1)/2
a^2 -(3-√2)*a - (3*√2 -1)/2 =0
D = (3-√2)^2 +2*(3*√2 -1) = 11 - 6*√2 +6*√2 -2 = 9 =3^2
a12= ( (3-√2) +-3 )/2
a1= (6-√2)/2 = 3- √2/2 > 1 (не подходит)
a2= -√2/2
sin(2x) =-√2/2
2x= (-1)^n*(-π/4) +π*n
tg(5y) = -√2/2
5y = arctg(-√2/2) +π*n
2. b = √2 -3 -a
a^2 - (3-√2)*( √2 -3 -a ) - (3*√2 -1)/2 = 0
a^2 +(3-√2) *(3-√2 +a) - (3*√2 -1)/2 = 0
a^2 +(3-√2)*a +(3-√2)^2 - (3*√2 -1)/2 = 0
a^2 + (3-√2)*a + (23-9*√2)/2 = 0
D = (3-√2)^2 -2*(23-9*√2) = 11-6*√2 -46 +18*√2 = 12*√2 -35 <0
Решений нет.
1.
(17³ + 16³) / 33- 17 × 16 = (4913 + 4096) / 33 - 272 = 9009 / 33 - 272 = 273 - 272 = 1
2.
a) 3b³ - 24 = 3(b³ - 8) = 3(b - 2)(b² + 2b + 4)
b) a² - 8ay + 16y² + 3a - 12y = (a - 4y)² + 3(a - 4y) = (a - 4y)(a - 4y + 3)
3.
a) (2y - 5)² + (3y - 5)(3y + 5) + 40y = 4y² - 20y + 25+ 9y² - 25 + 40y = 13y² + 20y
b) При y = -2:
13 × (-2)² + 20 × (-2) = 52 - 40 = 12
4.
x - y = 3, x² - y² = 87
x = 3 + y, x² - y² = 87
(3 + y)² - y² = 87
9 + 6y + y² - y² = 87
9 + 6y = 87
6y = 87 - 9
6y = 78
y = 13
x = 3 + 13
x = 16
(x, y) = (16, 13)
x= (-1)^(n+1) *(π/8) + π*n/2 n∈Z
y = -arctg(√2/2)/5 +π*n/5 n∈Z
Объяснение:
учитывая , что sin(-2x) = -sin(2x)
Сделаем замены :
sin(2x) =a ( -1<=a<=1)
tg(5y) =b
Система принимает вид :
1)a^2 -(3-√2)*b =(3*√2 -1)/2
2)b^2-(3-√2)*a = (3*√2 -1)/2
Вычитаем из уравнения 1 уравнение 2 :
(a^2-b^2) +(3-√2)*(a-b) = 0
(a-b)*(a+b +3-√2) =0
1. b=a
Подставим в уравнение 1 :
a^2 -(3-√2)*a =(3*√2 -1)/2
a^2 -(3-√2)*a - (3*√2 -1)/2 =0
D = (3-√2)^2 +2*(3*√2 -1) = 11 - 6*√2 +6*√2 -2 = 9 =3^2
a12= ( (3-√2) +-3 )/2
a1= (6-√2)/2 = 3- √2/2 > 1 (не подходит)
a2= -√2/2
sin(2x) =-√2/2
2x= (-1)^n*(-π/4) +π*n
x= (-1)^(n+1) *(π/8) + π*n/2 n∈Z
tg(5y) = -√2/2
5y = arctg(-√2/2) +π*n
y = -arctg(√2/2)/5 +π*n/5 n∈Z
2. b = √2 -3 -a
a^2 - (3-√2)*( √2 -3 -a ) - (3*√2 -1)/2 = 0
a^2 +(3-√2) *(3-√2 +a) - (3*√2 -1)/2 = 0
a^2 +(3-√2)*a +(3-√2)^2 - (3*√2 -1)/2 = 0
a^2 + (3-√2)*a + (23-9*√2)/2 = 0
D = (3-√2)^2 -2*(23-9*√2) = 11-6*√2 -46 +18*√2 = 12*√2 -35 <0
Решений нет.
Объяснение:
1.
(17³ + 16³) / 33- 17 × 16 = (4913 + 4096) / 33 - 272 = 9009 / 33 - 272 = 273 - 272 = 1
2.
a) 3b³ - 24 = 3(b³ - 8) = 3(b - 2)(b² + 2b + 4)
b) a² - 8ay + 16y² + 3a - 12y = (a - 4y)² + 3(a - 4y) = (a - 4y)(a - 4y + 3)
3.
a) (2y - 5)² + (3y - 5)(3y + 5) + 40y = 4y² - 20y + 25+ 9y² - 25 + 40y = 13y² + 20y
b) При y = -2:
13 × (-2)² + 20 × (-2) = 52 - 40 = 12
4.
x - y = 3, x² - y² = 87
x = 3 + y, x² - y² = 87
(3 + y)² - y² = 87
9 + 6y + y² - y² = 87
9 + 6y = 87
6y = 87 - 9
6y = 78
y = 13
x = 3 + 13
x = 16
(x, y) = (16, 13)