ответы:
А1. 2) 13√3.
А2. 9;
А3. √8+√2;
А4. -10√ху;
А5. 3/(2+√х);
В1. 3(3х-5);
В2. 6 -20√5.
Объяснение:
А1. Упростите выражение:
√12 + 5√27 - √48=√4*3+5√9*3-√16*3=2√3+5*3√3-4√3=(2+15-4)√3=13√3.
***
А2. Найдите значение выражения
(√7 - √2 )(√7 - √2 ) + √56= √7√7-√7√2-√7√2+√2√2+=7-2√14+2-2√14=9-2√14+2√14=9;
А4. Упростите выражение:
(√5х -√5У) (√5х - √5У) – 5(х + У)= √5х√5х-√5х√5у-√5х√5у+√5у√5у-5х-5у= 5х-5√ху-5√ху+5у-5х-5у= -10√ху.
А5. Сократите дробь:
(6-3√Х)/(4- Х)=3(2-√х)/(2-√х)(2+√х)=3/(2+√х).
Дополнительная часть.
В1. Разложите на множители выражение:
9х – 15=3(3х-5).
В2. Выполните действия:
-√20 (√5 √( 20) ) + √12 ∙ √3= - (√20√5√20)+2√3√3= - 20√5+6 =6 -20√5
a_1 = 1
d = 4
a_10 - ?
a_n = a_1 + d(n-1)
a_10 = a_1 + 9*d
a_10 = 1 + 9 * 4 = 1 + 36 = 37
2)
Дана чётная последовательность: 2 ; 4 ; 6 ; 8 ...
Видно , что чётные числа изменяются на каждое определённое число , а именно 2 . Это и есть разность арифметической прогрессии...Значит последовательность чётных чисел является арифметической последовательностью .. Таким образом мы можем найти любой член чётной арифметической прогрессии... Например 20
a_20 = a_1 + 19d
a_20 = 2 + 19 * 2 = 2 * (1+19) = 2 * 20 = 40
3)
a_10 = 0
d=2
a_1 - ?
a_10 = a_1 + 19d
a_1 = a_10 - 19d
a_1 = 0 - 19 * 2 = - 38
ответы:
А1. 2) 13√3.
А2. 9;
А3. √8+√2;
А4. -10√ху;
А5. 3/(2+√х);
В1. 3(3х-5);
В2. 6 -20√5.
Объяснение:
А1. Упростите выражение:
√12 + 5√27 - √48=√4*3+5√9*3-√16*3=2√3+5*3√3-4√3=(2+15-4)√3=13√3.
***
А2. Найдите значение выражения
(√7 - √2 )(√7 - √2 ) + √56= √7√7-√7√2-√7√2+√2√2+=7-2√14+2-2√14=9-2√14+2√14=9;
***
А4. Упростите выражение:
(√5х -√5У) (√5х - √5У) – 5(х + У)= √5х√5х-√5х√5у-√5х√5у+√5у√5у-5х-5у= 5х-5√ху-5√ху+5у-5х-5у= -10√ху.
***
А5. Сократите дробь:
(6-3√Х)/(4- Х)=3(2-√х)/(2-√х)(2+√х)=3/(2+√х).
***
Дополнительная часть.
В1. Разложите на множители выражение:
9х – 15=3(3х-5).
***
В2. Выполните действия:
-√20 (√5 √( 20) ) + √12 ∙ √3= - (√20√5√20)+2√3√3= - 20√5+6 =6 -20√5