В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ренат123456789
ренат123456789
19.02.2020 17:57 •  Алгебра

решить пример по алгебре ​


решить пример по алгебре ​

Показать ответ
Ответ:
Баэхич
Баэхич
08.04.2020 16:30

Координаты точки пересечения прямых (2; 1)

Решение системы уравнений (2; 1)

Объяснение:

Определить коэффициент а и найти решение системы уравнений графически:

ax + 3y = 11

5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=8 и y= -7.

1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:

ax + 3y = 11

а*8+3*(-7)=11

8а-21=11

8а=11+21

8а=32

а=4

Решим графически систему уравнений:

4x + 3y = 11

5x +2y = 12

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

              4x + 3y = 11                                          5x +2y = 12

               3у=11-4х                                              2у=12-5х

               у=(11-4х)/3                                           у=(12-5х)/2

                                          Таблицы:

            х    -1     2     5                                     х    -2     0     2

            у     5     1    -3                                     у     11     6     1

Согласно графика, координаты точки пересечения прямых (2; 1)

Решение системы уравнений (2; 1)

0,0(0 оценок)
Ответ:
katysha087
katysha087
27.02.2020 06:03

(x-a)(4x-1)(x+b)0

Нули выражения, записанного слева:   x_1=a\; ,\; \; x_2=\frac{1}{4}\; \; ,\; \; x_3=-b .

Решение неравенства имеет вид:   x\in (-\infty \, ;\, -3)\cup (\, \frac{1}{4}\, ;\, 9\, )\; .

Знаки  выражения, записанного слева, чередуются таким образом;

+++(-3)---(\frac{1}{4})+++(9)---

Поэтому в условии надо перед всей левой частью поставить знак минус, или записать  неравенство со знаком меньше, а не больше.

То есть   -(x-a)(4x-1)(x+b)0  или   (x-a)(4x-1)(x+b)  .

Тогда возможен вариант ответа:  \underline {\; a=9\; ,\; \; b=-3\; }  .

Вид неравенства:   (x-9)(4x-1)(x+3)

 Либо неравенство можно было записать , например, так:

(9-x)(4x-1)(x+3)0\;   или так     (x-9)(1-4x)(x+3)0\; .

Но заданное неравенство не будет иметь тот ответ, что записан в условии . Наверное, произошла описка и неравенство было задано со знаком меньше, а не больше.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота