Перенесем все на координатную плоскость. Пусть точка Н = (0,0), точка А лежит на оси Оу. На скрине А(0,7), В(0,4), а рассматривать мы будем любые А(0, а) и В(0,b).
Получается, одна прямая проходит точку А и точку (-k, 0) а другая - B и (k,0), при чем мы рассматриваем всевозможные k. Здесь k - расстояние от точки Н до точки С и D.
Кстати говоря, условие, что точка В должна быть между А и Н необязательно, можно взять и точку А между В и Н, на решение это не влияет в силу симметриии, главное, что бы обе точки лежали на перпендикуляре (то есть на оси Оу).
Запишем уравнение прямых.
Так как нас интересует пересечение - приравниваем:
Поскольку пересечение двух прямых точно лежит на каждой из них, нужно подставить полученный икс в уравнение любой из прямых, результат будет одинаков.
Получилось, что для любого k, то есть для любого расстояния между точкой H до С и D, мы находим зависимый от k икс, и независимый от k игрек. То есть как бы мы не раздвигали точки C и D, игрек будет всегда один и тот же, зависящий только от точек А и В, на которые мы "привязываем" прямые AD и BC.
Сложим первое и второе уравнение системы и заменим получившимся уравнением первое:
x²-2*x*y+y²=9
y²-x*y=3,
а так как x²-2*x*y+y²=(x-y)², то система приобретает вид:
(x-y)²=9
y²-x*y=3
Из первого уравнения следует, что либо x-y=3, либо x-y=-3. Поэтому данная система распадается на две:
x-y=3 и x-y=-3
y²-x*y=3 y²-x*y=3
1. Решаем первую систему. Из первого уравнения находим x=y+3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y+3=0, откуда y=-1 и x=2.
2. Решаем вторую систему. Из первого уравнения находим x=y-3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y-3=0, откуда y=1 и x=-2.
Перенесем все на координатную плоскость. Пусть точка Н = (0,0), точка А лежит на оси Оу. На скрине А(0,7), В(0,4), а рассматривать мы будем любые А(0, а) и В(0,b).
Получается, одна прямая проходит точку А и точку (-k, 0) а другая - B и (k,0), при чем мы рассматриваем всевозможные k. Здесь k - расстояние от точки Н до точки С и D.
Кстати говоря, условие, что точка В должна быть между А и Н необязательно, можно взять и точку А между В и Н, на решение это не влияет в силу симметриии, главное, что бы обе точки лежали на перпендикуляре (то есть на оси Оу).
Запишем уравнение прямых.
Так как нас интересует пересечение - приравниваем:
Поскольку пересечение двух прямых точно лежит на каждой из них, нужно подставить полученный икс в уравнение любой из прямых, результат будет одинаков.
Получилось, что для любого k, то есть для любого расстояния между точкой H до С и D, мы находим зависимый от k икс, и независимый от k игрек. То есть как бы мы не раздвигали точки C и D, игрек будет всегда один и тот же, зависящий только от точек А и В, на которые мы "привязываем" прямые AD и BC.
Итого, ответ - прямая
ответ: x1=2, y1=-1, x2=-2, y2=1.
Объяснение:
Сложим первое и второе уравнение системы и заменим получившимся уравнением первое:
x²-2*x*y+y²=9
y²-x*y=3,
а так как x²-2*x*y+y²=(x-y)², то система приобретает вид:
(x-y)²=9
y²-x*y=3
Из первого уравнения следует, что либо x-y=3, либо x-y=-3. Поэтому данная система распадается на две:
x-y=3 и x-y=-3
y²-x*y=3 y²-x*y=3
1. Решаем первую систему. Из первого уравнения находим x=y+3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y+3=0, откуда y=-1 и x=2.
2. Решаем вторую систему. Из первого уравнения находим x=y-3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y-3=0, откуда y=1 и x=-2.