60% пачек на 1 полке
Объяснение:
Пусть на 3 полке x пачек, тогда на 2 полке x+22 пачек.
На 1 полке в 1,5 раза больше, чем на 2 и 3 полках вместе, то есть:
1,5(x + x + 22) = 3/2*(2x + 22) = 3(x + 11) = 3x + 33.
На всех трёх полках всего 215 пачек.
3x + 33 + x + x + 22 = 215
5x + 55 = 215
x + 11 = 43
x = 43 - 11 = 32 пачки на 3 полке.
x + 22 = 32 + 22 = 54 пачки на 2 полке.
1,5(32 + 54) = 3/2*86 = 3*43 = 129 пачек на 1 полке.
129 + 54 + 32 = 215 пачек всего.
На 1 полке находится:
129/215 = 3/5 = 6/10 = 0,6 = 60% пачек.
Только причем здесь психопатия?
60% пачек на 1 полке
Объяснение:
Пусть на 3 полке x пачек, тогда на 2 полке x+22 пачек.
На 1 полке в 1,5 раза больше, чем на 2 и 3 полках вместе, то есть:
1,5(x + x + 22) = 3/2*(2x + 22) = 3(x + 11) = 3x + 33.
На всех трёх полках всего 215 пачек.
3x + 33 + x + x + 22 = 215
5x + 55 = 215
x + 11 = 43
x = 43 - 11 = 32 пачки на 3 полке.
x + 22 = 32 + 22 = 54 пачки на 2 полке.
1,5(32 + 54) = 3/2*86 = 3*43 = 129 пачек на 1 полке.
129 + 54 + 32 = 215 пачек всего.
На 1 полке находится:
129/215 = 3/5 = 6/10 = 0,6 = 60% пачек.
Только причем здесь психопатия?
(1): Т. Пифагора c^2 = a^2 + b^2
(2): Периметр: a + b + c = 60
(3): Подсчет площади двумя
Выразим c = 60 - a - b и возведём это уравнение в квадрат:
c^2 = 3600 + a^2 + b^2 + 2ab - 120a - 120b
Принимая во внимание (1) и (3), получаем
0 = 3600 + 24c - 120(a + b)
5(a + b) = c + 150
Из (2) a + b = 60 - c:
300 - 5c = c + 150
6c = 150
c = 25
Из (2) и (3) получаем систему уравнений на a и b:
{a + b = 35; ab = 300}
По теореме Виета a, b - корни уравнения
t^2 - 35t + 300 = 0
t1 = 15; t2 = 20
ответ. 15 см, 20 см, 25 см.