Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ (Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс) __-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Первому каменщику потребуется 12 - 6 = 6 часов.
ответ: 6 часов и 12 часов.
Находим нули функции:
Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ
(Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс)
__-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
x∈(-3;-2)∨(2;3)∨(4; +∞)