В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Виолакеса
Виолакеса
21.03.2022 00:01 •  Алгебра

решить с 3 по 5 задание

Показать ответ
Ответ:
Lero4ka222
Lero4ka222
31.12.2021 13:07

Объяснение:

Что такое возрастание или убывание функции? Объясняем на примере. Пусть у нас есть функция y=2x. Начнем подставлять в нее значения х, и вычислять значения у:

x₁=-1; y₁=2*(-1)=-2;

x₂=-0.5; y₂=2*(-0.5)=-1;

x₃=0; y₃=2*0=0;

x₄=1; y₄=2*1=2.

Смотрим на полученные числа. Видим, что x₄>x₃>x₂>x₁ при этом y₄>y₃>y₂>y₁. Т.е. значения х возрастают от x₁ до x₄, при этом значения у также возрастают от y₁ до y₄. Такая функция называется возрастающей (возрастает х → возрастает у).

Пример убывающей функции: y=-3x.

x₁=-1; y₁=-3*(-1)=3;

x₂=-0.5; y₂=-3*(-0.5)=1.5;

x₃=0; y₃=0;

x₄=1; y₄=-3*1=-3.

Видим, что х возрастает от -1 до +1, а у при этом убывает от +3 до -3 (возрастает х → убывает у). Такая функция называется убывающей.

Но т.к. мы не можем перебрать все значения х (их же бесконечно много) чтобы убедиться, что функция ведет себя одинаково на всей числовой прямой даже для таких простых функций, как в примере (такие функции называются линейными, и на графике они предстваляют собой прямую линию, а бывают еще и более сложные функции, которые возрастают на одном интервале, а на другом убывают), математики нашли универсальный определения возрастания или убывания функции.

Это определение через производную функции: если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X; если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.

1. y=2x+3;

найдем производную этой функции:

y'=(2x+3)'=2x'+3'=2+0=2';

y'=2.

Производная больше нуля, мало того: производная вообще не зависить от х. Следовательно функция возрастающая при любом х, говорят: "функция возрастает на интервале от минус бесконечности до плюс бесконечности".

y=2x+3 возрастает на Х ∈ (-∞;+∞).

* График этой функции - прямая, проходящая через две точки: (0;3) и (-3/2;0) Легко построить.

2. y=1-3x;

производная этой функции:

y'=(1-3x)'=0-3=-3 < 0

Здесь производная меньше нуля при любых значениях х (производная - постоянная величина). Функция убывает при любом х.

y=1-3x убывает на Х ∈ (-∞;+∞).

** График этой функции - прямая, проходящая через две точки: (0;1) и (1/3;0)

3. y=3-x²;

производная функции:

y'=(3-x²)'=0-2x=-2x.

Здесь производная зависит от значения х. Мало того: существует точка, где производная равна 0:

y'=0; -2x=0; x=0.

Эта точка называется точкой экстремума. Эта точка "отделяет" интервалы возрастания функции от интервалов убывания.

Получаем два интервала, на которых функция ведет себя совершенно по-разному. Если на одном она возрастает, то на другом убывает.

Эти интервалы:

x∈(-∞;0) и x∈(0;+∞);

Проверим. Возмем первый (левый) интервал x∈(-∞;0) , подставим два каких-либо (любых) числа х из этого интервала, и вычислим значение функции у:

x=-2; y=3-(-2)²=3-4=-1;

x=-1; y=3-(-1)²=3-1=2;

х возрастает (от-2 до -1), при этом у возрастает (от -1 до +2) - функция возрастает на интервале x∈(-∞;0).

Возмем правый интервал x∈(0;+∞), подставим два каких-либо числа х из этого интервала, и вычислим значение функции у:

x=2; y=3-(2)²=3-4=-1;

x=3; y=3-(3)²=3-9=-6;

х возрастает (от 2 до 3), у убывает (от -1 до -6) - функция убывает на интервале x∈(0;+∞).

***  График этой функции - квадратичная парабола y=x², "перевернутая вверх ногами" с вершиной в точке (0;3), пересекает ось ОХ в точках (-√3;0 ) и (√3;0).

0,0(0 оценок)
Ответ:
аааааа102
аааааа102
18.06.2021 14:43
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота