Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
||x-2|-3x|=2x+2 Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов. при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2 Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2) Следующим шагом раскрываем модуль на интервале (1/2;2) -2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2) Раскроем внутренний модуль для x>2 |x-2-3x|=2x+2⇒|-2-2x|=2x+2 Подмодульная функция положительная при x<-1 и отрицательная при x>-1 раскрываем модуль на интервале (2;∞) 2+2x=2x+2⇒x∈(2;∞) итак, х∈{0;(2;∞)} .
Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13.
Придя в 10 утра в В, он разворачивается и едет обратно.
В А он возвращается в 14.
Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги.
А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус,
который в 10 вышел из В.
Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги.
А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги.
И ровно в 11 он проедет 3/4 дороги и встретит первый автобус.
И дальше все точно также.
Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов.
при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2
Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2
2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2)
Следующим шагом раскрываем модуль на интервале (1/2;2)
-2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2)
Раскроем внутренний модуль для x>2
|x-2-3x|=2x+2⇒|-2-2x|=2x+2
Подмодульная функция положительная при x<-1 и отрицательная при x>-1
раскрываем модуль на интервале (2;∞)
2+2x=2x+2⇒x∈(2;∞)
итак, х∈{0;(2;∞)}
.