Пусть собственная скорость лодки равна х км/ч. Тогда скорость против течения равна (x-3) км/ч, а по течению - (x+3) км/ч.
По озеру лодка затратила 10/x часов, а против течения и по течению - 24/(x+3) часов и 24/(x-3) часов, соответственно.Возвращаясь домой тем же маршрутом, они затратили на путь против течения реки столько же времени, сколько на путь по течению реки и по озеру.
Составим и решим уравнение:
Решая квадратное уравнение, достанем следующие корни
- не удовлетворяет условию
км/ч - собственная скорость лодки
Скорость лодки по течению равна: 15 + 3 = 18 (км/ч)
Пусть собственная скорость лодки - х км/ч, составим таблицу:
S (км) V (км/ч) t(ч)
по течению 24 х + 3 24/( х + 3)
по озеру 10 х 10/х
против течения 24 х - 3 24/( х - 3)
Зная, что на путь против течения реки они затратили столько же времени, сколько на путь по течению реки и по озеру, составим уравнение:
24/( х - 3) = 24/( х + 3) + 10/х | * х( х - 3)( х + 3)
24 х( х + 3) = 24 х( х - 3) + 10( х - 3)( х + 3) |: 2
12 х( х + 3) = 12 х( х - 3) + 5( х - 3)( х + 3)
12 х² + 36х = 12 х² - 36х + 5( х² - 9)
36х = - 36х + 5 х² - 90
5 х² - 72х - 90 = 0
D = 72² + 4*5*45 = 5184 + 900 = 6084
√D = 78
х₁ = (72 + 78)/ 2*5 = 150/10 = 15 (км/ч) - обственная скорость лодки
х₂ = (72 - 78)/ 2*5 = - 6/10 = - 0,6 ( не подходит, т.к. скорость не может быть
отрицательной)
Скорость лодки по течению ровна: 15 + 3 = 18 (км/ч)
ответ: скорость движения лодки по течению реки 18 км/ч.
По озеру лодка затратила 10/x часов, а против течения и по течению - 24/(x+3) часов и 24/(x-3) часов, соответственно.Возвращаясь домой тем же маршрутом, они затратили на путь против течения реки столько же времени, сколько на путь по течению реки и по озеру.
Составим и решим уравнение:
Решая квадратное уравнение, достанем следующие корни
- не удовлетворяет условию
км/ч - собственная скорость лодки
Скорость лодки по течению равна: 15 + 3 = 18 (км/ч)
ответ: 18 км/ч.