Берем производную: y'=2x+4/x-2; 2x+4/x-2=0; x1=-2; x2=2; - выколотая точка; y=0; значит: точка (-2;0) - экстремиум функции; методом интервалов находим убывание/возрастание: убывает: (-беск;-2] возрастает: [-2;+беск) ищем асимптоты: слева: lim(x->-беск)(x+2/x-2)^2; справа: lim(x->беск)(x+2/x-2)^2; эти пределы равны: =x+2/x-2=1+0/1-0=1; значит уравнение горизонтальной асимтоты и слева и справа: y=1; наклонные асимтоты совпадают с горизонтальными; пересекает ох при х=-2; (-2;0) оу при у=1; (0;1) берем еще несколько точек и строим график
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.
Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе
1) есть только одна команда, которая не играла (0) 2) есть только одна команда, которая сыграла ровно одну игру (1) 3) есть только одна команда, которая сыграла ровно две игры (2) . . . 20) есть только одна команда, которая сыграла ровно 19 игр (19)
Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.
Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
y'=2x+4/x-2;
2x+4/x-2=0;
x1=-2;
x2=2; - выколотая точка;
y=0; значит:
точка (-2;0) - экстремиум функции;
методом интервалов находим убывание/возрастание:
убывает: (-беск;-2]
возрастает: [-2;+беск)
ищем асимптоты:
слева: lim(x->-беск)(x+2/x-2)^2;
справа: lim(x->беск)(x+2/x-2)^2;
эти пределы равны:
=x+2/x-2=1+0/1-0=1;
значит уравнение горизонтальной асимтоты и слева и справа: y=1;
наклонные асимтоты совпадают с горизонтальными;
пересекает ох при х=-2; (-2;0)
оу при у=1; (0;1)
берем еще несколько точек и строим график
Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе
1) есть только одна команда, которая не играла (0)
2) есть только одна команда, которая сыграла ровно одну игру (1)
3) есть только одна команда, которая сыграла ровно две игры (2)
.
.
.
20) есть только одна команда, которая сыграла ровно 19 игр (19)
Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.
Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей