1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
Объяснени1) y=5x-3
y=3x+1
Координаты пересечения:
5х-3=3х+1
5х-3х=1+3
2х=4
х=2
у=5*2-3=7
у=3*2+1=7
(2;7)
Для построения одна точка известна для обоих графиков, осталось найти еще по одной точке для каждого графика:
у=5х-3 первая точка (2;7)
х=0
у=5*0-3=-3
вторая точка (0;-3)
у=3х+1 первая точка (2;7)
х=0
у=3*0+1=1
вторая точка (0;1)
2) -4х+3=(1/2)х+3
(-4 1/2)х=0
х=0
у=-4*0+3=3
у=(1/2)*0+3=3
координата пересечения (0;3)
Построение:
х=-1
у=-4*(-1)+3=7
(0;3)(-1;7) для у=-4х+3
х=2
у=1/2*2+3=4
(0;3)(2;4) для у=(1/2)х+3
Графики в файле.
е:
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1