Вершины парабол будут расположены по одну сторону от оси ОХ, если ординаты вершин будут иметь одинаковый знак, т.е. обе ординаты будут положительны (обе вершины выше оси ОХ) или обе отрицательны (обе вершины ниже оси ОХ) .
y = -x² - 6mx + m
найдем координаты вершины (х₀, y₀):
х₀ = 6m/-2 = -3m
y₀ = - (-3m)² - 6m(-3m) + m = -9m² + 18m² + m = 9m² + m
Дробь может быть больше нулятолько тогда когда1. И числитель и знаменатель меньше нуля.2. И числитель и знаменатель больше нуля. Так как знаменатель в данном случае число 4 (положительное),то для того чтобы дробь была положительна, надо чтобы и числитель был больше нуля. Значит, ищем такие Х при которых-х-4>0прибавим к обеим частям неравенства 4.В народе говорят "перенесем 4 с противоположным знаком через знак неравенства"-х>4Теперь умножим обе части неравнества на "-1".
Как известно, знак неравенства при этом действии следует
сменить на противоположный.
Получаем, x<-4
при х<-4 функция принимает положительные значения.
Вершины парабол будут расположены по одну сторону от оси ОХ, если ординаты вершин будут иметь одинаковый знак, т.е. обе ординаты будут положительны (обе вершины выше оси ОХ) или обе отрицательны (обе вершины ниже оси ОХ)
.
y = -x² - 6mx + m
найдем координаты вершины (х₀, y₀):
х₀ = 6m/-2 = -3m
y₀ = - (-3m)² - 6m(-3m) + m = -9m² + 18m² + m = 9m² + m
y = x² - 4mx - 2
найдем координаты вершины (х₀, y₀):
х₀ = 4m/2 = 2m
y₀ = (2m)² - 4m(2m) - 2 = 4m² - 8m² - 2 = - 4m² - 2 = - (4m² + 2)
Т.к. выражение - (4m² + 2) отрицательно при любом m, значит выражение 9m² + m должно быть тоже отрицательно, т.е.
9m² + m < 0
m(9m + 1) < 0
9m(m + 1/9) < 0 | :9
m(m + 1/9) < 0
Нули ф-ции m = 0 или m = - 1/9, расставим знаки ф-ции, учитывая, что ветви параболы направлены вверх.
+ +
-1/90
-
Т.о. m(m + 1/9) < 0 на промежутке (-1/9 ; 0 )
ответ: -1/9 < m < 0.
Приведем к общему знаменателю
(-х-8)/4 + 4/4 >0
(-х-8+4)/4>0
(-х-4)/4>0
Дробь может быть больше нулятолько тогда когда1. И числитель и знаменатель меньше нуля.2. И числитель и знаменатель больше нуля.
Так как знаменатель в данном случае число 4 (положительное),то для того чтобы дробь была положительна, надо чтобы и числитель был больше нуля. Значит, ищем такие Х при которых-х-4>0прибавим к обеим частям неравенства 4.В народе говорят "перенесем 4 с противоположным знаком через знак неравенства"-х>4Теперь умножим обе части неравнества на "-1".
Как известно, знак неравенства при этом действии следует
сменить на противоположный.
Получаем,
x<-4
при х<-4 функция принимает положительные значения.