Объяснение:
ВАРИАНТ 1.
Задание 1) у= х^2
Подставляем значения х и у в данную фунцкию:
A( 3:-9) , Где х=3, у= -9 (и последующие точки по аналогии)
Подставляем: -9=3^2
-9=9 - неверно, зн. точка не принадлежит графику функции у= х^2
B( 1;1)
у= х^2
1=1^2
1=1- верно, зн. точка принадлежит графику функции у= х^2
C(-1;-1)
-1=1 - неверно, зн. точка не принадлежит графику функции у= х^2
D ( -3;9)
9= 9 - верно, зн. точка принадлежит графику функции у= х^2
Задание 2)
а) х (нулевое) = -b\2a = 4\2= 2
у (нулевое) = у(х)=у(2) = 4-8+5= 1
(2;1)-вершина
б) х(нулевое) = 7\4
у(нулевое) = 2*49\16 - 7*7\4 + 9 = 49\8 - 49\4 + 9 = 49\8 - 96\8 +9 = = -49\8 + 9= 9 - 6 1\8 = 8 8\8 - 6 1\8 = 2 7\8
( 7\4; 2 7\8) - вершина
Задание 3.)
1) Пусть у = 0, тогда -2х^2 + 3х +2 = 0
D= 25
х 1 =- 1\2 х2 = 2
( -1\2 ;0) , (2;0) - точки пересечения параболы с осью ОХ
Пусть х=0 , тогда y=2
(0;2) - точка пересечения параболы с осью OY
4) у = х^2 - 2х -1
а) х (нулевое) = 2\2= 1
у(нулевое) = 1-2-1= -2
(1;-2) - вершина параболы
б) Пусть х=0, тогда у= -1
(0;-1) - точка пересечения с осью ОУ
в) х= -1, 2 ,3(подставляем значения х)
у= 2, -5, -4
Далее строим параболу по этим точкам. Находим, где функция возрастает, а где убывает.
Объяснение:
ВАРИАНТ 1.
Задание 1) у= х^2
Подставляем значения х и у в данную фунцкию:
A( 3:-9) , Где х=3, у= -9 (и последующие точки по аналогии)
Подставляем: -9=3^2
-9=9 - неверно, зн. точка не принадлежит графику функции у= х^2
B( 1;1)
у= х^2
1=1^2
1=1- верно, зн. точка принадлежит графику функции у= х^2
C(-1;-1)
у= х^2
-1=1 - неверно, зн. точка не принадлежит графику функции у= х^2
D ( -3;9)
у= х^2
9= 9 - верно, зн. точка принадлежит графику функции у= х^2
Задание 2)
а) х (нулевое) = -b\2a = 4\2= 2
у (нулевое) = у(х)=у(2) = 4-8+5= 1
(2;1)-вершина
б) х(нулевое) = 7\4
у(нулевое) = 2*49\16 - 7*7\4 + 9 = 49\8 - 49\4 + 9 = 49\8 - 96\8 +9 = = -49\8 + 9= 9 - 6 1\8 = 8 8\8 - 6 1\8 = 2 7\8
( 7\4; 2 7\8) - вершина
Задание 3.)
1) Пусть у = 0, тогда -2х^2 + 3х +2 = 0
D= 25
х 1 =- 1\2 х2 = 2
( -1\2 ;0) , (2;0) - точки пересечения параболы с осью ОХ
Пусть х=0 , тогда y=2
(0;2) - точка пересечения параболы с осью OY
4) у = х^2 - 2х -1
а) х (нулевое) = 2\2= 1
у(нулевое) = 1-2-1= -2
(1;-2) - вершина параболы
б) Пусть х=0, тогда у= -1
(0;-1) - точка пересечения с осью ОУ
в) х= -1, 2 ,3(подставляем значения х)
у= 2, -5, -4
Далее строим параболу по этим точкам. Находим, где функция возрастает, а где убывает.
1/2*(1+cos(4x-π/2))+1/2*(1+cos(5x+π/2)=1
1+sin4x+1-sin5x=2
sin4x-sin5x=0
2sin(-x/2)cos(9x/2)=0
sin(-x/2)=0
x/2=πn.n∈z
x=360n,n∈z
0≤360n≤180
0≤n≤0,5
нет решения на промежутке [0;180]
cos(9x/2)=0
9x/2=π/2+πk,k∈z
x=20+40k,k∈z
0≤20+40k≤180
-20≤40k≤160
-0,5≤k≤4
k=0⇒x1=20
k=1⇒x2=60
k=2⇒x3=100
k=3⇒x4=140
k=4⇒x5=180
x1+x2+x3+x4+x5=20+60+100+140+180=500
4
1/2*(1-cos(4x-π/2))=1/2(sin(5x/2+π/4-5x/2-7π/4)+sin(5x/2+π/4+5x/2+7π/4))
1-sin4x=sin(-3π/2)+sin(5x+2π)
1-sin4x=1+sin5x
sin5x+sin4x=0
2sin(9x/2)cos(x/2)=0
sin(9x/2)=0
9x/2=πn,n∈z
x=2πn/9,n∈z
cos(x/2)=0
x/2=π/2+πk,k∈z
x=π+2πk,k∈z