Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.
В решении.
Объяснение:
Решить уравнение с модулем:
1) |х+2|+х=0
х+2 = -х ⇒ 2х = -2 ⇒ х= -1;
х+2 = х ⇒ 0х = -2.
ответ: х= -1;
2) -3|x-4|-x=0
а) х-4>=0 ⇒ -х-3(х-4)=0
-х-3х+12=0
-4х= -12
х=3, но это решение не удовлетворяет неравенству:
б) х-4 < 0 ⇒ -х-3(4-х)=0
-х-12+3х=0
-х+3х=12
2х=12
х=6, но это решение не удовлетворяет неравенству
х-4>=0
Для данной задачи не существует решения в действительных числах.
Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.
В решении.
Объяснение:
Решить уравнение с модулем:
1) |х+2|+х=0
х+2 = -х ⇒ 2х = -2 ⇒ х= -1;
х+2 = х ⇒ 0х = -2.
ответ: х= -1;
2) -3|x-4|-x=0
а) х-4>=0 ⇒ -х-3(х-4)=0
-х-3х+12=0
-4х= -12
х=3, но это решение не удовлетворяет неравенству:
б) х-4 < 0 ⇒ -х-3(4-х)=0
-х-12+3х=0
-х+3х=12
2х=12
х=6, но это решение не удовлетворяет неравенству
х-4>=0
Для данной задачи не существует решения в действительных числах.