Сложим первое и второе уравнение системы и заменим получившимся уравнением первое:
x²-2*x*y+y²=9
y²-x*y=3,
а так как x²-2*x*y+y²=(x-y)², то система приобретает вид:
(x-y)²=9
y²-x*y=3
Из первого уравнения следует, что либо x-y=3, либо x-y=-3. Поэтому данная система распадается на две:
x-y=3 и x-y=-3
y²-x*y=3 y²-x*y=3
1. Решаем первую систему. Из первого уравнения находим x=y+3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y+3=0, откуда y=-1 и x=2.
2. Решаем вторую систему. Из первого уравнения находим x=y-3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y-3=0, откуда y=1 и x=-2.
ответ: x1=2, y1=-1, x2=-2, y2=1.
Объяснение:
Сложим первое и второе уравнение системы и заменим получившимся уравнением первое:
x²-2*x*y+y²=9
y²-x*y=3,
а так как x²-2*x*y+y²=(x-y)², то система приобретает вид:
(x-y)²=9
y²-x*y=3
Из первого уравнения следует, что либо x-y=3, либо x-y=-3. Поэтому данная система распадается на две:
x-y=3 и x-y=-3
y²-x*y=3 y²-x*y=3
1. Решаем первую систему. Из первого уравнения находим x=y+3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y+3=0, откуда y=-1 и x=2.
2. Решаем вторую систему. Из первого уравнения находим x=y-3. Подставляя это выражение во второе уравнение, приходим к уравнению 3*y-3=0, откуда y=1 и x=-2.
Объяснение:
x²-xy=6; x(x-y)=6
y²-xy=3; y(y-x)=3; -y(x-y)=3
x(x-y)/(-y(x-y))=6/3
-x/y=2
x=-2y
y(y-(-2y))=3
y(y+2y)=3
3y²=3
y²=3/3=1
y1=1
y2=-1
x1=-2*1=-2
x2=-2*(-1)=2