Решить! сложить числовые выражения и найти их значения каждого из них:
1) добуток ризници чисел 35 и -25 та чисел 1,1;
2) часта числа 9,5 та суми чисел 6 и -7,9;
3) частка добутку чисел -16 и -1,5 та числа 0,9;
4) добуток ризници и суми чисел 1,4 и 0,6;
5) ризниця частки чисел 6,8 и -0,2 та добутку чисел 8 и -12
6) ризниця квадратив чисел -6 и 7;
7) квадрат ризници чисел -3,2 и 4 ,6
1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
y0=-9+5+18=14
значит а [0;14]
2) sqrt(x-1)=a+x x>=1
x-1=x^2+a^2+2ax
x^2+(2a-1)x+a^2+1=0
D>0 (2a-1)^2-4a^2-4>0 -4a-3>0 a<-3/4
3) 4x^2-15x+4a^3=0
x1=x2^2
x1*x2=a^3
x2^3=a^3 x2=a
15/4=x1+x2 15/4=a^2+a
4a^2+4a-15=0 a1=3/2 a2=-5/2
x^2-ax+(a-1)=0
x1^2+x2^2=(x1+x2)^2-2x1x2=17
a^2-2(a-1)=17
a^2-2a-15=0
a1=5 a2=-3
В решении.
Объяснение:
Пользоваться этими формулами:
D=b²-4ac = √D=
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
1. Решить уравнения:
1) x² +8x-13 = 0;
D=b²-4ac = 64+52=116 √D= √4*29 = 2√29;
х₁=(-b-√D)/2a
х₁=(-8 -2√29)/2
х₁= -4 - √29;
х₂=(-b+√D)/2a
х₂=(-8 + 2√29)/2
х₂= -4 + √29.
2) 2x²- 4x-17 = 0;
Разделить уравнение на 2 для упрощения:
x²- 2x - 8,5 = 0;
D=b²-4ac = 4 + 34 = 38 √D= √38 = √4*9,5 = √4*19/2 = 2√19/2;
х₁=(-b-√D)/2a
х₁=(2-2√19/2)/2
х₁=1-√19/2; 19/2 под корнем;
х₂=(-b+√D)/2a
х₂=(2+2√19/2)/2
х₂=1+√19/2; 19/2 под корнем;
3) 9x² +42x+49 =0;
D=b²-4ac = 1764 - 1764 = 0 √D=0
х=(-b±√D)/2a
х= -42/18
х= -7/3.
4) x² -10x+37 = 0;
D=b²-4ac = 100 - 148 = -48
D < 0
Уравнение не имеет действительных корней.
5) (3x+2)(x-4)=5;
Раскрыть скобки, привести подобные члены:
3х² - 12х + 2х - 8 - 5 = 0
3х² - 10х - 13 = 0
D=b²-4ac = 100 + 156 = 256 √D=
16
х₁=(-b-√D)/2a
х₁=(10-16)/6
х₁= -6/6
х₁= -1;
х₂=(-b+√D)/2a
х₂=(10+16)/6
х₂=26/6
х₂=13/3.
6) (3(х² - 1))/7 - (х + 9)/6 = (х + 6)/3
Умножить уравнение (все части) на 42, чтобы избавиться от дробного выражения, надписать над числителями дополнительные множители:
6*3(х² - 1) - 7*(х + 9) = 14*(х + 6)
Раскрыть скобки:
18х² - 18 - 7х - 63 = 14х + 84
Привести подобные члены:
18х² - 7х - 81 - 14х - 84 = 0
18х² - 21х - 165 = 0
Разделить уравнение на 3 для упрощения:
6х² - 7х - 55 = 0
D=b²-4ac = 49 + 1320 = 1369 √D=37
х₁=(-b-√D)/2a
х₁=(7-37)/12
х₁= -30/12
х₁= -2,5;
х₂=(-b+√D)/2a
х₂=(7+37)/12
х₂=44/12
х₂=11/3.
Проверка путём подстановки вычисленных значений х в уравнения показала, что данные решения удовлетворяют данным уравнениям.