Пусть х-скорость первого пешехода,тогда х-1 - скорость второго пешехода. ТАк как путь и того и другого равен 5 км/ч,тогда скорость первого пешехода 5/x, а второго 5/x-1. Ещ нам известно,что второму понадобилось на 15 минут больше чем первому. ПОэтому составим уравнение:
5/x-1 - 5/x=15
x(x-1)
домножим каждую дробь на недостающий множитель,получим:
5х-5х+5-15х^2-15х=-15х^2-15х+5---это числитель
х^2-хзнаменатель,он должен быть не равен 0(так как знаменатель отличен от нуля)значит х не равен 0 и не равен 1
Пусть х-скорость первого пешехода,тогда х-1 - скорость второго пешехода. ТАк как путь и того и другого равен 5 км/ч,тогда скорость первого пешехода 5/x, а второго 5/x-1. Ещ нам известно,что второму понадобилось на 15 минут больше чем первому. ПОэтому составим уравнение:
5/x-1 - 5/x=15
x(x-1)
домножим каждую дробь на недостающий множитель,получим:
5х-5х+5-15х^2-15х=-15х^2-15х+5---это числитель
х^2-хзнаменатель,он должен быть не равен 0(так как знаменатель отличен от нуля)значит х не равен 0 и не равен 1
а числитель равен о
-15х^2 -15х +5=0 разделим обе части на - 5
3х^2+3х-1=0
находим дискриминант 9+12=21
1. - 1;
2. 1.
Объяснение:
1. (5^2)^6•(5^7 : 5^4) /(-125)^5 = 5^(2•6) • 5^(7-4)/(-5^3)^5 = 5^12 • 5^3/(-5^15) = 5^15/(-5^15) = -1.
(✓при возведении степени в степень основание оставляем прежним, показатели умножаем;
✓при умножении степеней с одинаковыми основаниями основание оставляем прежним, показатели складываем;
✓при делении степеней с одинаковыми основаниями основание оставляем прежним, показатели вычитаем.)
2. ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = -(3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = - (3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = + (3^9•3^4•3^12)/(3^30 : 3^5) = 3^25/3^25 = 1.