1 задание. 5х-у-2=0 х в квадрате -2ху+у в квадрате=0 -у=2-5х х в квадрате -2ху+у в квадрате=0
у=5х-2 х в квадрате-2ху+у в квадрате=0
х в квадрате-2х(5х-2)+(5х-2) в квадрате=0
х в квадрате -10х в квадрате +4х+25х в квадрате +4-20х=0
16х в квадрате -16х+4=0
Д=16 в квадрате -*16*4=256-256=0 х=16/(4*16)=0,25
у=5*0,25-2=1,25-2=-0,75. ответ: х= 0,25; у=-0,75
1 задание. 5х-у-2=0
х в квадрате -2ху+у в квадрате=0
-у=2-5х
х в квадрате -2ху+у в квадрате=0
у=5х-2
х в квадрате-2ху+у в квадрате=0
х в квадрате-2х(5х-2)+(5х-2) в квадрате=0
х в квадрате -10х в квадрате +4х+25х в квадрате +4-20х=0
16х в квадрате -16х+4=0
Д=16 в квадрате -*16*4=256-256=0
х=16/(4*16)=0,25
у=5*0,25-2=1,25-2=-0,75.
ответ: х= 0,25; у=-0,75
Решить уравнение
25*sin(x)cos(x)-sin(x)-cos(x)=5 ;
25*( ( sin(x) +cos(x) )² - 1) /2 - ( sin(x) +cos(x) =5 ;
замена: t = sin(x) +cos(x) = √2cos(x -π/4) ; -√2 ≤ √2cos(x -π/4) ≤ √2
25(t² -1)/2 - t =5 ;
25t² -2t -35 =0 ; D₁ =(2/2)² - 25*(-35) =1 +875 =876 =(2√219)²
t₁ = (1 -2√219) / 25 ;
t₂ = (1+2√219) / 25 .
* * * t₁ и t₂ ∈ [ - √2 ; √2] * * *
a)
√2cos(x -π/4) = (1 -2√219) / 25 ;
cos(x -π/4) = √2(1 -2√219) / 50
x -π/4 = ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
x = π/ 4 ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
б)
√2cos(x -π/4) = (1 +2√219) / 25;
x = π/ 4 ± arccos (√2(1 +2√219) / 50) +2πn , n ∈ Z .√2