В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Лубаша
Лубаша
11.06.2020 08:41 •  Алгебра

Решить тригонометрические уравнения, . sin^2x-9 sin x*cos x+3cos^2x=-1 найдите корни уравнения √3sin2x=cos2x , принадлежащие отрезку [-1; 4]

Показать ответ
Ответ:
Vbeker
Vbeker
03.10.2020 03:13
sin^2x-9sinxcosx+3cos^2x=-1 \\ sin^2x-9sinxcosx+3cos^2x+1=0 \\ sin^2x-9sinxcosx+3cos^2x+sin^2x+cos^2x=0 \\ 2sin^2x-9sinxcosx+4cos^2x=0 | :cos^2x \\ 2tg^2x-9tgx+4=0 \\
D = 81 - 32 = 49 \\ 
tgx = 4, tgx = 0.5 \\ 
x = arctg(4), x = arctg(0.5)

\frac{ \sqrt{3} sin(2x)}{cos(2x)} = 1 \\ 
 \sqrt{3} tg(2x) = 1 \\ 
tg(2x) = \frac{1}{ \sqrt{3} } \\ 
2x = arctg( \frac{1}{ \sqrt{3} } ) = \pi / 6 \\ 
x = \pi / 12 + \pi n
Для отрезка [-1; 4] это \pi / 12 и 13 \pi /12, дальше уже больше 4.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота