В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
toteara1
toteara1
19.10.2020 12:51 •  Алгебра

Решить тригонометрическое уравнение sin^2(x)+2cos(x)+2*√-3cos(x)=0

Показать ответ
Ответ:
XУЙ228228
XУЙ228228
01.10.2020 23:04
(sin^2(x)+2cos(x)+2)*(√-3cos(x))=0
ОДЗ
-3cos(x) >= 0
cos(x) <= 0
хє[pi/2+2*pi*k;3pi/2+2*pi*k]
решение
(sin^2(x)+2cos(x)+2)*(√-3cos(x))=0
(sin^2(x)+2cos(x)+2)=0 или (√(-3cos(x)))=0
a)
(sin^2(x)+2cos(x)+2)=0
1-cos^2(x)+2cos(x)+2=0
cos^2(x)-2cos(x)-3=0
d=4+12=16
cos(x)=(2-4)/2=-1 или cos(x)=(2+4)/2=3 (ложный корень)
cos(x)=-1
х=pi+2*pi*к - принадлежит ОДЗ
б)
(√(-3cos(x)))=0
cos(x)=0
х=pi/2+pi*к - принадлежит ОДЗ

ответ х=pi+2*pi*к и х=pi/2+pi*к
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота