В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Rostik666
Rostik666
12.03.2021 13:43 •  Алгебра

Решить, . у наименьшее: y=ln(e^2-x^2) при [-1; 1]

Показать ответ
Ответ:
sanyahit
sanyahit
17.07.2020 08:53
 у'= (ln(e^2-x^2))'= (1/(e^2-x^2))*(e^2-x^2)'=(1/(e^2-x^2))* (-2x)
а дальше ищем где y'=0,
когда x=e (в знаменателе 0) не рассматриваем, т.к. это вне заданного в условии интервала
 (1/(e^2-x^2))* (-2x) = 0
-2х = 0
х =0

производная больше нуля когда x = [-1,0) функция возрастает
производная меньше нуля когда x = (0,1] функция убывает
0 -точка максимума, а в точках -1 или 1 будет минимальное значение функции
y(-1) = ln(e^2-1)
y(1) = ln(e^2-1)
То есть наименьшее значение  ln(e^2-1)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота