(1+cos4x)*sin2x=cos^2(2x) (sin^2(2x)+cos^2(2x)+cos^2(2x)-sin^2(2x))*sin2x=cos^2(2x) 2cos^2(2x)*sin2x=cos^2(2x) 2cos^2(2x)*sin2x-cos^2(2x)=0 cos^2(2x)*(2sin2x-1)=0 1)cos^2(2x)=0 cos2x=0 2x=П/2+Пk,k принадлежит Z x=П/4+Пk/2,k принадлежит Z 2)2sin2x-1=0 sin2x=1/2 2x=(-1)^k*П/6+Пk, k принадлежит Z x=(-1)^k*П/12+Пk/2, k принадлежит Z Вроде бы правильно.
(sin^2(2x)+cos^2(2x)+cos^2(2x)-sin^2(2x))*sin2x=cos^2(2x)
2cos^2(2x)*sin2x=cos^2(2x)
2cos^2(2x)*sin2x-cos^2(2x)=0
cos^2(2x)*(2sin2x-1)=0
1)cos^2(2x)=0
cos2x=0
2x=П/2+Пk,k принадлежит Z
x=П/4+Пk/2,k принадлежит Z
2)2sin2x-1=0
sin2x=1/2
2x=(-1)^k*П/6+Пk, k принадлежит Z
x=(-1)^k*П/12+Пk/2, k принадлежит Z
Вроде бы правильно.