В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vika23562
vika23562
24.04.2022 23:00 •  Алгебра

Решить уравнение 3sin^2x+1/2sin2x=2cos^2x

Показать ответ
Ответ:
DarkD0711
DarkD0711
06.10.2020 11:00
3sin^2 x+\frac{1}{2}sin(2x)=2cos^2x
используем формулу двойного синуса sin(2A)=2sinAcosA
3sin^2 x+\frac{1}{2}*2sin x*cos x-2cos^2 x=0
3sin^2 x+sin x*cos x-2cos^2 x=0
при sin x=0; cos x=1; 3*0^2+0*1-2*(1)^2 =-2\neq 0
при sin x=0; cos x=-1; 3*0^2+0*(-1)-2*(-1)^2 =-2\neq 0
значит при делении на cos^2 x потери корней не будет

делим на cos^2 x, при этом используем tg x=\frac{sin x}{cos x}

получим уравнение
3tg^2 x+tg x-2=0
делаем замену
tg x=y
3y^2+y-2=0
D=1^2-4*3*(-2)=25=5^2
y_1=\frac{-1-5}{2*3}=-1
y_2=\frac{-1+5}{2*3}=\frac{2}{3}
возвращаемся к замене
tg x=-1; x=arctg(-1)+\pi*k
x=-\frac{\pi}{4}+\pi*k, k є Z

tg x=\frac{2}{3}
x=arctg \frac{2}{3}+\pi*n, n є Z
ответ: -\frac{\pi}{4}+\pi*k, k є Z
arctg \frac{2}{3}+\pi*n, n є Z

Решить уравнение 3sin^2x+1/2sin2x=2cos^2x
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота