В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
наталя40
наталя40
29.07.2020 14:13 •  Алгебра

Решить уравнение 3sin(pi/2+x)-cos(2pi+x)=1 найти корни уравнения, принадлежащие отрезку [0; 2pi] cos2x+3sinx=1 найти наименьшее и наибольшее значение функции y=2cos2x+ sin^2x

Показать ответ
Ответ:
Grizman7
Grizman7
23.05.2020 15:21

1) 3sin(pi/2+x)-cos(2pi+x)=1

3cos(x)-cos(x)=1

2cos(x)=1

cos(x)=1/2

x=+-arccos(1/2)+2*pi*n

x=+-pi/3+2*pi*n

 

2)  cos2x+3sinx=1

1-2sin^2(x)+3sin(x) =1

3sin(x)-2sin^2(x)=0

sin(x)*(3-2sin(x)=0

a)  sin(x)=0

x=pi*n

б) 3-2sin(x)=0

sin(x)=3/2 >1 - не удовлетворяет ОДЗ - нет решений

таким образом на [0;2pi] корни 0; pi; 2pi

 

3) y=2cos2x+ sin^2x

Найдем производную и приравняем к нулю

y ' = -4sin(2x)+2sin(x)cos(x)=-3sin(2x)=0

sin(2x)=0

2x=pi*n

x=pi*n/2

точки вида pi*n/2 - точки max и min

 

При x=pi/2

y=-1

При x=pi

y=2

тоесть

Точки min pi*n/2 , где n нечетное

Точки max  pi*n/2 , где n четное

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота