=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
1. a)5 < m < 15; 5*1/5 < 1/5 m < 15*1/5; 1 < 1/5 < 3
b) 5 < -2m < 15; 5*(-2) < -2m < 15*(-2); -10 < -2m < -30; -30 < -2m < -10
c) 5 < m-6 < 15; -5+6 < m-6 < -15+6 ; 1 < m-6 < -9; -9< m-6 < 1
2. a) 2.6 <√7 <2.7; 2.6*2 < 2√7 < 2.7*2 ; 5.2 < √7 < 5.4
b)- 2.6 <-√7 < -2.7; -2,7 < -√7 < -2,6
c) 2.6 <√7 <2.7; 2+2.6 < 2+√7 < 2+2.7; 4.6 < √7 < 4.7
d)2.6 <√7 <2.7; 3-2.6 < 3-√7 <3-2.7; 0.4 <;3-√7 <0.3; 0.3 < 3-√7 < 0.4
Объяснение:
=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).