Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∆ МОК - прямоугольный.
Отношение катетов 10:24=5:12 указывает на то, что длины сторон треугольника из Пифагоровых троек 5:12:13, в которых эти длины –целые числа.⇒ МО=2•13=26. И это можно проверить по т.Пифагора.
МО=√(KO²+KM²)=√676=26
В прямоугольном треугольнике каждый катет является высотой, проведенной к другому катету.
Площадь прямоугольного треугольника равна половине произведения катетов:
1) (2х-у)/у 2) - 2у / (х+у) 3) 5/6с
Объяснение:
(2х/у² - 1/2х ):(1/у+1/2х)= ( приводим к общему знаменателю в каждой скобке отдельно, в первой скобке знаменатель 2ху²,во второй 2ху)
Приводим к общему знаменателю домножив первый на 2х второй член первых скобок на у², во второй скобке на 2х и второй на у.) получим
(4х² -у²)/2ху : (2х+у)/2ху =
(2х-у)(2х+у) 2ху
х = (2х-у)/у
2ху ² (2х+у)
2) сперва приведем к знаменателю а потом по формуле сокращенного умножения разложим
(х²-2ху+у²-х²+у² ) / (х-у)(х+у)= 2у(у-х) / (х-у)(х+у)= -2у(х-у) / (х-у)(х+у)
=-2у / (х+у)
(3с+2с)/6 *1/с²=5с/6с²=5/6с
Обозначим центр окружности О, точку касания К.
Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∆ МОК - прямоугольный.
Отношение катетов 10:24=5:12 указывает на то, что длины сторон треугольника из Пифагоровых троек 5:12:13, в которых эти длины –целые числа.⇒ МО=2•13=26. И это можно проверить по т.Пифагора.
МО=√(KO²+KM²)=√676=26
В прямоугольном треугольнике каждый катет является высотой, проведенной к другому катету.
Площадь прямоугольного треугольника равна половине произведения катетов:
S=КМ•КО:2=24•10:2=120 см²