Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
24,5 (км/час) - скорость катера в стоячей воде
3,5 (км/час) - скорость течения реки
Объяснение:
х - скорость катера
у - скорость течения
х+у - скорость катера по течению
х-у - скорость катера против течения
По условию задачи по течению катер шёл 3 часа, против течения 4 часа, система уравнений:
х+у=28
(х+у)*3=(х-у)*4
Преобразуем второе уравнение:
(х+у)*3=(х-у)*4=
=3х+3у=4х-4у=
=3х-4х+3у+4у=
= -х+7у
В первом уравнении выразим х через у и полученное выражение подставим во новое второе уравнение:
х=(28-у)
- (28-у)+7у
-28+у+7у
8у=28
у=3,5 (км/час) - скорость течения реки
х=28-3,5=24,5 (км/час) - скорость катера в стоячей воде
Проверка:
(24,5+3,5)*3= 84 (км) проплыл катер по течению
(24,5-3,5)*4= 84 (км) - проплыл катер против течения (обратно). Всё верно.