1) пусть x- скорость автомобилиста, тогда скорость мотоциклиста x-20; s=vt; s которое проехал автомобилист= 5x, а расстояние, которое проехал мотоциклист= 7(x-20) так как расстояние они проехали одинаковое мы их приравниваем 5x=7(x-20) отсюда x=70( скорость автомобилиста).
Скорость мотоциклиста= 70-20=50
2)пусть x- скорость мотоциклиста, тогда скорость велосипедиста x-25; s=vt; t мотоциклиста=2 целых 15/60=2,25;
s которое проехал мотоциклист= 2,25x, а расстояние, которое проехал велосипедист= 6(х-25), так как расстояние они проехали одинаковое мы их приравниваем 2,25х=6(х-25) отсюда x=40( скорость мотоциклиста).Скорость велосипедиста= 40-25=15.
Примем , что первая труба заполняет бассейн за х часов , тогда вторая труба заполнит бассейн за (х + 5) часов . За 1 примем объем бассейна . 1/х - скорость заполнения бассейна первой трубой 1/(х + 5) - скорость заполнения бассейна второй трубой 1/х + 1/ (х + 5) = (х + 5) / х*(х + 5) + х / х*(х + 5) = (2х + 5) / (x^2 + 5x) - скорость заполнения бассейна за 1 час двумя трубами . По условию задачи имеем : 1 / (2х + 5)/(x^2 + 5x) = 6 x^2 + 5x = 6*(2x + 5) x^2 + 5x = 12x + 30 x^2 + 5x -12x - 30 = 0 x^2 - 7x - 30 = 0 . Найдем дискриминант уравнения D и найдем его корни . D = (- 7)^2 - 4 * 1 *(- 30) = 49 + 120 = 169 . Корень квадратный из дискриминанта равен 13 . Корни уравнения равны : 1 - ый = (- (- 7) +13) / 2*1 = (7 + 13) / 2 = 20 / 2 = 10 ; 2 - ой = (- (- 7) - 13) / 2*1 = (7 - 13) / 2 = - 6 / 2 = - 3 . Второй корень нам не подходит так как время заполнения не может быть меньше 0 . Отсюда время заполнения бассейна первой трубой равно х = 10 часов
1) пусть x- скорость автомобилиста, тогда скорость мотоциклиста x-20; s=vt; s которое проехал автомобилист= 5x, а расстояние, которое проехал мотоциклист= 7(x-20) так как расстояние они проехали одинаковое мы их приравниваем 5x=7(x-20) отсюда x=70( скорость автомобилиста).
Скорость мотоциклиста= 70-20=50
2)пусть x- скорость мотоциклиста, тогда скорость велосипедиста x-25; s=vt; t мотоциклиста=2 целых 15/60=2,25;
s которое проехал мотоциклист= 2,25x, а расстояние, которое проехал велосипедист= 6(х-25), так как расстояние они проехали одинаковое мы их приравниваем 2,25х=6(х-25) отсюда x=40( скорость мотоциклиста).Скорость велосипедиста= 40-25=15.
1/х - скорость заполнения бассейна первой трубой
1/(х + 5) - скорость заполнения бассейна второй трубой
1/х + 1/ (х + 5) = (х + 5) / х*(х + 5) + х / х*(х + 5) = (2х + 5) / (x^2 + 5x) - скорость заполнения бассейна за 1 час двумя трубами . По условию задачи имеем : 1 / (2х + 5)/(x^2 + 5x) = 6
x^2 + 5x = 6*(2x + 5)
x^2 + 5x = 12x + 30
x^2 + 5x -12x - 30 = 0
x^2 - 7x - 30 = 0 . Найдем дискриминант уравнения D и найдем его корни . D = (- 7)^2 - 4 * 1 *(- 30) = 49 + 120 = 169 . Корень квадратный из дискриминанта равен 13 . Корни уравнения равны : 1 - ый = (- (- 7) +13) / 2*1 = (7 + 13) / 2 = 20 / 2 = 10 ; 2 - ой = (- (- 7) - 13) / 2*1 = (7 - 13) / 2 = - 6 / 2 = - 3 . Второй корень нам не подходит так как время заполнения не может быть меньше 0 . Отсюда время заполнения бассейна первой трубой равно х = 10 часов