Лодка, плывущая по течению, до места встречи пройдёт 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт 37,2 км
Объяснение:
Пусть скорость лодок в стоячей воде х км/ч. Тогда скорость по течению (х+4) км/ч, а против течения (х-4) км/ч Т.к. лодки плыли 1,2 ч. То можно составить и решить уравнение
1,2 (х-4) +1,2 (х+4) = 84
1,2(х-4+х+4)= 84
1,2*2*х= 84
х= 84/2,4
х=35
Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт
1,2 (35+4)= 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт
Выражение содержит дробь,то знаменатель не равен 0 у=(2х-5)/(х+1)⇒х≠-1 D(f)∈(-∞;-1) U (-1;∞) Если выражение содержит радикал четной степени, то подкоренное выражение может быть только положительным или равняться 0. f(x)=√(5x-7)⇒5x-7≥0⇒x≥1,4⇒D(f)∈[1,4;∞) Если выражение содержит логарифмическую функцию,то выражение стоящее под знаком логарифма всегда должно быть только положительным ,основание больше 0 и не равняться 1 f(x)=log(2)(5-x)⇒5-х>0⇒x<5⇒D(f)∈(-∞;5) f(x)=log(x)2 D(f)∈(0;1) U (1;∞) Для f(x)=tgx D(f)∈(-π/2+πn;π/2+πn,n∈z) Для f(x)=ctgx D(f)∈(πn;π+πn,n∈z) В остальном D(f)∈(-∞;∞)
Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт 37,2 км
Объяснение:
Пусть скорость лодок в стоячей воде х км/ч. Тогда скорость по течению (х+4) км/ч, а против течения (х-4) км/ч Т.к. лодки плыли 1,2 ч. То можно составить и решить уравнение
1,2 (х-4) +1,2 (х+4) = 84
1,2(х-4+х+4)= 84
1,2*2*х= 84
х= 84/2,4
х=35
Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт
1,2 (35+4)= 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт
1,2 (35-4)= 37,2 км
у=(2х-5)/(х+1)⇒х≠-1 D(f)∈(-∞;-1) U (-1;∞)
Если выражение содержит радикал четной степени, то подкоренное выражение может быть только положительным или равняться 0.
f(x)=√(5x-7)⇒5x-7≥0⇒x≥1,4⇒D(f)∈[1,4;∞)
Если выражение содержит логарифмическую функцию,то выражение стоящее под знаком логарифма всегда должно быть только положительным ,основание больше 0 и не равняться 1
f(x)=log(2)(5-x)⇒5-х>0⇒x<5⇒D(f)∈(-∞;5)
f(x)=log(x)2 D(f)∈(0;1) U (1;∞)
Для f(x)=tgx D(f)∈(-π/2+πn;π/2+πn,n∈z)
Для f(x)=ctgx D(f)∈(πn;π+πn,n∈z)
В остальном D(f)∈(-∞;∞)