Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
legoman1858
23.01.2021 12:21 •
Алгебра
Решить уравнение. подбором находим один корень , но как найти остальные? также можно заметить, что
Показать ответ
Ответ:
Элечка5556
05.10.2020 14:27
Ну насчет степеней ты сам догадался, про замену тебе подсказали, решаем дальше.
Во-первых, t = (2+√3)^x > 0 при любом x
t^3 - 5t^2 + 6t + 1/t - 5 = 0
Умножаем все на t.
t^4 - 5t^3 + 6t^2 - 5t + 1 = 0
Это симметричное уравнение, оно решается делением на t^2
t^2 - 5t + 6 - 5/t + 1/t^2 = 0
Заметим, что (t + 1/t)^2 = t^2 + 2*t*1/t + 1/t^2 = (t^2 + 2 + 1/t^2)
(t^2 + 2 + 1/t^2) - 5(t + 1/t) + 4 = 0
(t + 1/t)^2 - 5(t + 1/t) + 4 = 0
Опять замена t + 1/t = z >= 2 при любом t > 0, причем z = 2 при t = 1.
z^2 - 5z + 4 = 0
Наконец-то свели к к квадратному уравнению.
(z - 1)(z - 4) = 0
1) z = 1 - не бывает, решений нет
2) z = 4 = t + 1/t
t^2 - 4t + 1 = 0
D = 4^2 - 2*1*1 = 16 - 4 = 12 = (2√3)^2
t1 = (4 - 2√3)/2 = 2 - √3
t2 = 2 + √3
Обратная замена
t1 = (2 + √3)^x = 2 - √3 = (2 + √3)^(-1); x1 = -1
t2 = (2 + √3)^x = 2 + √3; x2 = 1
Всё!
0,0
(0 оценок)
Популярные вопросы: Алгебра
Лерой04
28.09.2021 13:37
(x-1)(x+1)=2(5x-10 целых 1/2) решить дискриминантом...
Bogdan8950
28.09.2021 13:37
Sin 24*cos 6-cos 84*sin66/sin 21*cos39-sin69*cos51...
nyto4ek
28.09.2021 13:37
Вычислите площадь фигуры,ограниченной параболой y=6(x-x^2) и осью ox...
PolinaFox6002
28.09.2021 13:37
Найдите значение выражения (92/5*1,5+0,4)*1/7-(1/6+3,5) / дробь...
дмитрий462
28.09.2021 13:37
Решите уравнение х^3-3х^2-36х+108=0...
esnira1098376
28.09.2021 13:37
Преобразуйте многочлен в стандартный вид (7,3с-с в квадрате+4) + 0,5с в квадрате - (8,7с-2,4с в квадрате)...
Снежана1995
27.03.2021 06:01
Sin 24*cos 6-cos 84*sin66/sin 21*cos39-sin69*cos51...
фирдавс6
24.12.2020 19:02
(x-7) (x+1)-(x+3) в квадрате - у выражение...
dfefert4tNNN
11.11.2022 07:20
Побудуй графік функції y=5 і за графіком визнач координати точки перетину графіка функції з віссю Oy...
ajshshdj
13.01.2021 08:33
Обчислити значення похідної функції у =sin х у точці х = π /4...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Во-первых, t = (2+√3)^x > 0 при любом x
t^3 - 5t^2 + 6t + 1/t - 5 = 0
Умножаем все на t.
t^4 - 5t^3 + 6t^2 - 5t + 1 = 0
Это симметричное уравнение, оно решается делением на t^2
t^2 - 5t + 6 - 5/t + 1/t^2 = 0
Заметим, что (t + 1/t)^2 = t^2 + 2*t*1/t + 1/t^2 = (t^2 + 2 + 1/t^2)
(t^2 + 2 + 1/t^2) - 5(t + 1/t) + 4 = 0
(t + 1/t)^2 - 5(t + 1/t) + 4 = 0
Опять замена t + 1/t = z >= 2 при любом t > 0, причем z = 2 при t = 1.
z^2 - 5z + 4 = 0
Наконец-то свели к к квадратному уравнению.
(z - 1)(z - 4) = 0
1) z = 1 - не бывает, решений нет
2) z = 4 = t + 1/t
t^2 - 4t + 1 = 0
D = 4^2 - 2*1*1 = 16 - 4 = 12 = (2√3)^2
t1 = (4 - 2√3)/2 = 2 - √3
t2 = 2 + √3
Обратная замена
t1 = (2 + √3)^x = 2 - √3 = (2 + √3)^(-1); x1 = -1
t2 = (2 + √3)^x = 2 + √3; x2 = 1
Всё!