В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
darisha0003
darisha0003
19.09.2022 02:05 •  Алгебра

Решить уравнение \sqrt{6}* sinx+\sqrt{5-cosx} =0

Показать ответ
Ответ:
sashaStreet1
sashaStreet1
25.05.2020 13:30

5 - сosx > 0   при любом х

√(5-сosx)=- √6·sinx

Уравнение имеет смысл при sinx ≤0   ⇒   x в  3  или 4 четверти

Возводим в квадрат

5-cosx=6sin²x

5-cosx=6·(1-cos²x)

6cos²x - cosx -1=0

Квадратное уравнение относительно cosx

Замена переменной

cosx=t

6t² - t - 1 = 0

D = 1 - 4·6·( -1) = 25

t₁=(1-5)/12=-1/3   или   t₂=(1+5)/12=1/2

Обратный переход

cosx=-1/3

x=±arccos(-1/3)+2πn, n∈Z

условию sinx ≤0   ⇒   x в  3  или 4 четверти

удовлетворяют корни

x= - arccos(-1/3)+2πn, n∈Z

x= - (π -  arccos(1/3))+2πn, n∈Z

cosx=1/2

x=±arccos(1/2)+2πm, m∈Z

x=±arccos(π/3)+2πm, m∈Z

условию sinx ≤0   ⇒   x в  3  или 4 четверти

удовлетворяют корни

x= - (π/3)+2πm, m∈Z

О т в е т.  - (π -  arccos(1/3))+2πn,   - (π/3)+2πm,   n, m∈Z

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота