2. Найдите множество точек координатной плоскости, которое задано системой неравенств:
х2 – 4х + у2 – 5 ≤ 0,
у + х2 – 3 ≤ 0.
3. Решите систему уравнений:
х2 + у = 10,
3х -у = = -10.
x=5-y
(5-y)^2-3y+15=0
25+y^2-10y-3y+15=0
y^2-13y+40=0
y=1/2(13+-3)
y1=8 x1=-3
y2=5 x2=0
4. Решите задачу с системы уравнений.
Найдите числа, сумма которых равна 20, а произведение – 75. х+у=20
ху=75
х+75/х=20
х^2+75-20x/x=0
x^2-20x+75=0
D=400-300=100
x=20+10/2 или x=20-10/2
x=15 x=5
15у=75 5у=75
у=5 у=15
ответ: числа 5 и 15
5. Из цифр 4, 1, 5, 3, 6, 9 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди этих чисел таких, которые кратны 2? Фиксируем цифру 4 на последнее место. Тогда на первое место можно использовать 5 цифр, на второе место - оставшиеся 4 цифры, на третье место - 3 цифры, на четвертое место - оставшиеся 2 цифры. По правилу произведения, таких четных чисел, в котором на последнем месте цифра 4 , равно 5*4*3*2*1 = 120Аналогично, фиксируя цифру 6 на последнее место, таких тоже будет 120. По правилу сложения, 120+120 = 240 чисел, делящиеся на 2.
6. В кружке по спортивной стрельбе 16 мальчиков и 6 девочек. Сколькими можно выбрать из них четырех мальчиков и двух девочек для участия в соревнованиях?7. Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: 0, 2, 4,6,8Так как на первое место 0 нельзя использовать, то берем любую цифру из 4, на второе место выбираем 4 цифры (0 используется), на третье место - оставшиеся 3 цифры, на третье место - 2 цифры. По правилу произведения, всего четырехзначных чисел 4*4*3*2=96
2. Найдите множество точек координатной плоскости, которое задано системой неравенств:
х2 – 4х + у2 – 5 ≤ 0,
у + х2 – 3 ≤ 0.
3. Решите систему уравнений:
х2 + у = 10,
3х -у = = -10.
x=5-y
(5-y)^2-3y+15=0
25+y^2-10y-3y+15=0
y^2-13y+40=0
y=1/2(13+-3)
y1=8 x1=-3
y2=5 x2=0
4. Решите задачу с системы уравнений.
Найдите числа, сумма которых равна 20, а произведение – 75. х+у=20
ху=75
х+75/х=20
х^2+75-20x/x=0
x^2-20x+75=0
D=400-300=100
x=20+10/2 или x=20-10/2
x=15 x=5
15у=75 5у=75
у=5 у=15
ответ: числа 5 и 15
5. Из цифр 4, 1, 5, 3, 6, 9 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди этих чисел таких, которые кратны 2? Фиксируем цифру 4 на последнее место. Тогда на первое место можно использовать 5 цифр, на второе место - оставшиеся 4 цифры, на третье место - 3 цифры, на четвертое место - оставшиеся 2 цифры. По правилу произведения, таких четных чисел, в котором на последнем месте цифра 4 , равно 5*4*3*2*1 = 120Аналогично, фиксируя цифру 6 на последнее место, таких тоже будет 120. По правилу сложения, 120+120 = 240 чисел, делящиеся на 2.
6. В кружке по спортивной стрельбе 16 мальчиков и 6 девочек. Сколькими можно выбрать из них четырех мальчиков и двух девочек для участия в соревнованиях?7. Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: 0, 2, 4,6,8Так как на первое место 0 нельзя использовать, то берем любую цифру из 4, на второе место выбираем 4 цифры (0 используется), на третье место - оставшиеся 3 цифры, на третье место - 2 цифры. По правилу произведения, всего четырехзначных чисел 4*4*3*2=96
Объяснение:
вот,всем удачи
ответ: (0; -6)
Объяснение:
1)Найдём абсциссы точек пересечения графика с осью абсцисс:
x⁴+x²-2=0
пусть х²=у≥0 ⇒ у²+у-2=0
D=1+8=9>0
y₁= (-1+3)/2=1
y₂=(-1-3)/2=-2<0 (не удовл условию у≥0)
Если у=1, то х²=1 ⇒ х₁=1, х₂=-1 (абсциссы точек пересечения графика с осью абсцисс)
2)Найдём уравнение касательной к кривой y=x⁴+x²-2 в точке с абсциссой x₀₁ = 1.
Запишем уравнения касательной в общем виде:
y = y₀ + y'(x₀)(x - x₀)
По условию задачи x₀₁= 1, тогда y₀ = 1⁴+1²-2=0
Теперь найдем производную:
y' = (x⁴+x²-2)' = 4х³+2x
следовательно: y'(x₀)=у'(1) = 4·1³+2·1 = 6
Тогда уравнение касательной в точке с абсциссой х₀₁=1:
y=0+6·(x-1)=6х-6 или y = 6·x-6 (уравнение первой касательной)
3) Найдём уравнение касательной к кривой y=x⁴+x²-2 в точке с абсциссой x₀₂ = -1.
По условию задачи x₀₂= - 1, тогда y₀=y₀₂ = 1⁴+1²-2=0
y' = 4х³+2x
следовательно: y'(x₀₂)=у'(-1) = 4·(-1)³+2·(-1) = -6
Тогда уравнение касательной в точке с абсциссой х₀₂=-1:
y=0-6·(x+1)=-6х-6 или y = -6·x-6 (уравнение второй касательной)
4)Найдём точку пересечения этих касательных:
6х-6= -6х-6
12х=0
х=0 ⇒ у=6·0-6= -6 ⇒ (0; -6) точка пересечения этих касательных