Сумма n членов посл-ти в числителе: Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n= (1) =(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2) (2) <<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д. Таким образом получили (1) Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>> (n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4
n=1/4(5+-1) n=1 да
26=2n²-5n+1 2n²-5n-25=0
n=1/4(5+-15) n=5 да
2.
a6=a1+5d 0,75=a1+5d
a10=a1+9d 1,75=a1+9d
4d=1 d=0,25
a1=0,75-1,25=-0,5
S6=(a1+a6)*6/2=(0,75-0,5)*3=0,75
Геометрическая прогрессия:
1. q=b2/b1=(-1/16)/(-1/32)=2
bn=(-1/32)*2^(n-1)
2. b5=b1*q^4=72*1/3^4=72/81=8/9
Бесконечно убывающая геометрич. прогрес.
1.
S=b1/(1-q)=10/0,2=50
q=8/10 1-q=0,2
2.
S=b1/(1-q)=14
b1=14*(1+2/7)=14*9/7=18
b2=18*(-2/7)=-36/7
Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n= (1)
=(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2) (2)
<<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д.
Таким образом получили (1)
Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>>
(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const
Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4