решить В классе учатся 25 учеников. из них:
11 шестнадцатилетних (F)
12 семнадцатилетних (S)
у 8 учеников дома есть овцы (D)
у 7 учеников есть коровы (C)
у 4 учеников нет никакой живности (N)
выбираем произвольно учащегося.найдите следующее
a) P(F) b) P(S) c) P(D) d) P(C) e) P(N) f) P(F∪S) g) P(C∪N) h) P(F∪D) i) P(D∪N)
Производная этой функции равна:
Так как переменная производной находится в знаменателе, то производная не равна 0 и поэтому функция не имеет ни минимума, ни максимума.
1 f(x) = (- 3 / (x + 1)³) - 2 Область определения функции
Точки, в которых функция точно не определена:x1 = -1.
Функция только убывающая:
-1 > x >-∞ и ∞ > x >-1.
Точки пересечения с осью координат X График функции пересекает ось X при f = , значит надо решить уравнение: 1 -------- - 2 = 0 3 (x + 1) Точки пересечения с осью X:Аналитическое решение 2/3 2 x1 = -1 + ---- 2 Численное решениеx1 = -0.206299474016
Точки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/((x + 1)^3) - 2.1 -- - 2 3 1 Результат:f(0) = -1Точка:(0, -1)
График функции f = 1/((x + 1)^3) приведен в приложении.
2Экстремумы функции. Для того, чтобы найти экстремумы,нужно решить уравнениеd --(f(x)) = 0 dx (производная равна нулю),и корни этого уравнения будут экстремумами данной функции:d --(f(x)) = dx -3 ---------------- = 0 3 (x + 1)*(x + 1) Решаем это уравнение. Решения не найдены,значит экстремумов у функции нет
Точки перегибов. Найдем точки перегибов, для этого надо решить уравнение 2 d ---(f(x)) = 0 2 dx (вторая производная равняется нулю),корни полученного уравнения будут точками перегибов для указанного графика функции, 2 d ---(f(x)) = 2 dx 12 -------- = 0 5 (1 + x) Решаем это уравнение. Решения не найдены,значит перегибов у функции нет
Вертикальные асимптоты. Есть:x1 = -1
Горизонтальные асимптоты. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 1 lim -------- - 2 = -2 x->-oo 3 (x + 1) значит,уравнение горизонтальной асимптоты слева:y = -2 1 lim -------- - 2 = -2 x->oo 3 (x + 1) значит,уравнение горизонтальной асимптоты справа:y = -2
Наклонные асимптоты. Наклонную асимптоту можно найти, подсчитав предел функции 1/((x + 1)^3) - 2, делённой на x при x->+oo и x->-oo 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->-oo x значит,наклонная совпадает с горизонтальной асимптотой справа 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->oo x значит,наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции. Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).Итак, проверяем: 1 1 -------- - 2 = -2 + -------- 3 3 (x + 1) (1 - x) - Нет 1 1 -------- - 2 = 2 - -------- 3 3 (x + 1) (1 - x) - Нет, значит, функция не является ни чётной, ни нечётной.
ответ: 40,3 км/час.
Объяснение:
Решение.
Пусть собственная скорость катера равна х км/час.
Тогда скорость по течению равна х+4 км/час,
a скорость против течения равна х-4 км/час.
Время затраченное на прохождение по течению равно
t1=S/v1=48/(x+4),
а время на прохождения против течения равно
t2=S/v2 = 48/(x-4).
Общее время равно 2 часа 24 минуты =2,4 часа.
Составим уравнение:
48/(х+4) + 48/(х-4) = 2,4;
48(x-4)+48(x+4)=2.4(x+4)(x-4);
48x - 192 + 48x+192 = 2.4x² - 38.4;
2.4x² - 96x - 38.4 =0;
x² - 40x - 16=0;
D=(-40)²-4*1*(-16)=1600+64=1664>0 - 2 корня.
х1,2=(-(-40) ±√1664) / 2=(40±8√26)/2 = 20±4√26;
х1=40,3 х2= -0,396 - не соответствует условию.
х = 40,3 км/час- собственная скорость катера.
Проверим
48/(40,3+4) + 48/(40,3-4)=2,4;
48/44,3 + 48/36,3 = 2,4;
1,08 + 1,32 = 2,4;
2,4=2,4.
Все верно!