Так как числа у нас не указаны, то это могут быть любые числа, но при этом их общий делитель составляет 20 % от одного из них, или 1/5 от него, поэтому давайте посмотрим на примерах. Какой это может быть делитель: 2 не может быть, тогда число а будет равно 10, а число b может быть только 2 (чтобы общим наибольшим делителем было число 2), тогда наибольший общий делитель 2 будет составлять 100% от числа b, а такого ответа у нас нет. Перебирая таким образом все возможные общие делители при сохранении всех условий задачи, делаем выводы, что правильный ответ: 25 %. Как пример можно привести: а = 15, b = 12, наибольший общий делитель - 3. ответ: 25 % (вариант Д).
Найдём производную :
Приравняем производную к нулю:
Возведём обе части в квадрат:
(x² - 6x + 9)(x² - 14x + 58) = (x² - 14x + 49)(x² - 6x + 13)
x⁴ - 14x³ + 58x² - 6x³ + 84x² - 348x + 9x² - 126x + 522 = x⁴ - 6x³ + 13x² - 14x³ + 84x² - 182x + 49x² - 294x + 637
67x² - 474x + 522 = 62x² - 476x + 637
5x² + 2x - 115 = 0
D = (-1)² - 5 * (- 115) = 1 + 575 = 576 = 24²
x₁ = (- 1 + 24)/5 = 4,6
x₂ = (- 1 - 24)/5 = - 5
+ - +
________________________
- 5 4,6
min
Какой это может быть делитель: 2 не может быть, тогда число а будет равно 10, а число b может быть только 2 (чтобы общим наибольшим делителем было число 2), тогда наибольший общий делитель 2 будет составлять 100% от числа b, а такого ответа у нас нет. Перебирая таким образом все возможные общие делители при сохранении всех условий задачи, делаем выводы, что правильный ответ: 25 %. Как пример можно привести: а = 15, b = 12, наибольший общий делитель - 3.
ответ: 25 % (вариант Д).