в треугольнике alm угол aml=20(градусов) lp- биссектриса, lm=2al. сторону ma треугольника продолжили затточку a так, что pa=ak. найдите градусную меру угла kla
максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.
Точка x0 называется точкой строгого локального максимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)<f(x0).
Точка x0 называется точкой строгого локального минимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)>f(x0).
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.
Чтобы определить проходит ли график функции через данные точки, нужно координаты этих точек подставить в уравнение функции и проверить, выполняется ли равенство.
у=3х²-х-2
А (-1; 2)
2=3*(-1)²-(-1)-2
2=3+1-2
2=2
Равенство верно, следовательно график функции проходит через точку А.
В (2; 8)
8=3*2²-2-2
8=12-4
8=8
Равенство верно, следовательно график функции проходит через точку В.
С (0;3)
3=3*0²-0-2
3=-2
Равенство неверно, следовательно график функции не проходит через точку С.
D (1; 4)
4=3*1²-1-2
4=3-3
4=0
Равенство неверно, следовательно график функции не проходит через точку D.
ответ: график функции у=3х²-х-2 проходит через точку А (-1; 2) и В (2; 8).
Объяснение:
максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.
Точка x0 называется точкой строгого локального максимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)<f(x0).
Точка x0 называется точкой строгого локального минимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)>f(x0).
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.
Чтобы определить проходит ли график функции через данные точки, нужно координаты этих точек подставить в уравнение функции и проверить, выполняется ли равенство.
у=3х²-х-2
А (-1; 2)
2=3*(-1)²-(-1)-2
2=3+1-2
2=2
Равенство верно, следовательно график функции проходит через точку А.
В (2; 8)
8=3*2²-2-2
8=12-4
8=8
Равенство верно, следовательно график функции проходит через точку В.
С (0;3)
3=3*0²-0-2
3=-2
Равенство неверно, следовательно график функции не проходит через точку С.
D (1; 4)
4=3*1²-1-2
4=3-3
4=0
Равенство неверно, следовательно график функции не проходит через точку D.
ответ: график функции у=3х²-х-2 проходит через точку А (-1; 2) и В (2; 8).