1) (a+6)(a-9)>(a+11)(a-14)
a²+6a-9a-54>a²+11a-14a-154
a²+6a-9a-54-(a²+11a-14a-154)>0
a²+6a-9a-54-a²-11a+14a+154>0
100>0 верное неравенство при любом значении переменной а.
Доказано.
2) (a-10)²-12<(a-7)(a-13)
a²-20a+100-12<a²-7a-13a+91
a²-20a+88<a²-20a+91
a²-20a+88-(a²-20a+91)<0
a²-20a+88-a²+20a-91<0
-3<0 верное неравенство при любом значении переменной а.
3) (4a-1)(4a+1)-(5a-7)²<14·(5a-1)
16a²-1-(25a²-70a+49)<70a-14
16a²-1-25a²+70a-49<70a-14
-9a²+70a-50<70a-14
-9a²+70a-50-(70a-14)<0
-9a²+70a-50-70a+14<0
-9a²-36<0
-9·(a²+4)<0 | : (-9) делим обе части на на отрицательное число, при этом знак неравенства изменяется на противоположный.
-9·(a²+4) : (-9) > 0:(-9)
a²+4 > 0 верное неравенство при любом значении переменной а.
1) Приводим левую часть к общему знаменателю:
(3х-5)(х-2)-(2х-5)(х-1)/(х-1)(х-2)=1
2) Если уравнение равное единицы, то знаменатель дроби и числитель равны между собой, следовательно, получаем следующее:
(3х-5)(х-2)-(2х-5)(х-1)=(х-1)(х-2)
3) Раскрываем скобки по всем правилам:
3х^2-6х-5х+10-2х^2+2х+5х-5=х^2-2х-х+2
4) Все с х и х^2 в одну сторону с противоположным знаком , приводим подобные и производим необходимы действия:
3х^2-2х^2-х^2-6х-5х+2х+5х+2х+х=-10+5+2
-х=-3/:(-1)
х=3
5) Проверяем, подставив ответ в исходное уравнение
1) (a+6)(a-9)>(a+11)(a-14)
a²+6a-9a-54>a²+11a-14a-154
a²+6a-9a-54-(a²+11a-14a-154)>0
a²+6a-9a-54-a²-11a+14a+154>0
100>0 верное неравенство при любом значении переменной а.
Доказано.
2) (a-10)²-12<(a-7)(a-13)
a²-20a+100-12<a²-7a-13a+91
a²-20a+88<a²-20a+91
a²-20a+88-(a²-20a+91)<0
a²-20a+88-(a²-20a+91)<0
a²-20a+88-a²+20a-91<0
-3<0 верное неравенство при любом значении переменной а.
Доказано.
3) (4a-1)(4a+1)-(5a-7)²<14·(5a-1)
16a²-1-(25a²-70a+49)<70a-14
16a²-1-25a²+70a-49<70a-14
-9a²+70a-50<70a-14
-9a²+70a-50-(70a-14)<0
-9a²+70a-50-70a+14<0
-9a²-36<0
-9·(a²+4)<0 | : (-9) делим обе части на на отрицательное число, при этом знак неравенства изменяется на противоположный.
-9·(a²+4) : (-9) > 0:(-9)
a²+4 > 0 верное неравенство при любом значении переменной а.
Доказано.
1) Приводим левую часть к общему знаменателю:
(3х-5)(х-2)-(2х-5)(х-1)/(х-1)(х-2)=1
2) Если уравнение равное единицы, то знаменатель дроби и числитель равны между собой, следовательно, получаем следующее:
(3х-5)(х-2)-(2х-5)(х-1)=(х-1)(х-2)
3) Раскрываем скобки по всем правилам:
3х^2-6х-5х+10-2х^2+2х+5х-5=х^2-2х-х+2
4) Все с х и х^2 в одну сторону с противоположным знаком , приводим подобные и производим необходимы действия:
3х^2-2х^2-х^2-6х-5х+2х+5х+2х+х=-10+5+2
-х=-3/:(-1)
х=3
5) Проверяем, подставив ответ в исходное уравнение