Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3 т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим 4n+3<100 4n<97 n<24,25 Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа 4n+3≥10 4n≥7 n≥1,75 номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии а₂=4*2+3=11 а₂₄=4*24+3=99 Сумма n последовательных членов арифметической прогрессии начиная с члена : Sn=(а₁+аn)*n/2 т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим S₂₃=(11+99)*23/2=1265 Удачи!
{x+2y=10 => y=(10-x)/2 => -0.5x+5
{f(x)=3x-2
{f(x)=-0.5x+5
x=2
y=4
Проверка: {3*2-4=2
{2+2*4=10
Графическое решение - во вложении
2. {x-3y=6 => x=6+3y
{2y-5x=-4
2y-5(6+3y)=-4
2y-30-15y=-4
-13y=26
y=-2
x=6+3*-2
x=0
3. {3x-2y=4 |*2
{6x+4y=16 |*1
{6x-4y=8
{6x+4y=16
12x=24
x=2
3*2-2y=4
-2y=-2
y=1
6*2+4y=16
12+4y=16
4y=4
y=1
Координаты точки пересечения графиков (2;1)
4. {4x-6y=2 |*1
{3y-2x=1 => -2x+3y=1 |*2
{4x-6y=2
{-4x+6y=2
4x-4x-6y+6y=2+2
0=4 - равенство неверно
Cистема не имеет решений
Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим
4n+3<100
4n<97
n<24,25
Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа
4n+3≥10
4n≥7
n≥1,75
номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии
а₂=4*2+3=11
а₂₄=4*24+3=99
Сумма n последовательных членов арифметической прогрессии начиная с члена :
Sn=(а₁+аn)*n/2
т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим
S₂₃=(11+99)*23/2=1265
Удачи!