1)Найдём абсциссу точки пересечения графиков этих из уравнения
f(x) = g(x)
2 √x = 2√(6-x) - возводим в квадрат обе части
4х = 4(6-x)
4х = 24 - 4х
8х = 24
х = 3
Угол, под которым пересекаются графики - это угол между касательными, проведёнными к линиям в точке их пересечения. Производная функции в данной точке равна угловому коэффициенту касательной, проведённой к графику функции в данной точке, поэтому угол, под которым пересекаются линии, находимм по формуле:
tgα = (k₁ - k₂)/(1 +k₁k₂)
k₁ = f'(x₀), k₂ = g'(x₀)
Сначала найдем значения производных функций в точке х = 3:
Пусть y = uv, тогда y' = u'v + uv':
Решим левый интеграл:
cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">
Возвращаемся к исходному:
1)Найдём абсциссу точки пересечения графиков этих из уравнения
f(x) = g(x)
2 √x = 2√(6-x) - возводим в квадрат обе части
4х = 4(6-x)
4х = 24 - 4х
8х = 24
х = 3
Угол, под которым пересекаются графики - это угол между касательными, проведёнными к линиям в точке их пересечения. Производная функции в данной точке равна угловому коэффициенту касательной, проведённой к графику функции в данной точке, поэтому угол, под которым пересекаются линии, находимм по формуле:
tgα = (k₁ - k₂)/(1 +k₁k₂)
k₁ = f'(x₀), k₂ = g'(x₀)
Сначала найдем значения производных функций в точке х = 3:
f'(x) = (2 √x)' = 1/√x k₁ = f'(3) = 1/√3
g'(x) = (2√(6-x))' = - 1/√6-x k₂ = g'(3) = - 1/√6-3 = - 1/√3
Тогда тангенс угла пересечения в точке х = 1 равен
tgα = (1/√3 - (- 1/√3)) / (1 + 1/√3*(- 1/√3)) = 2/√3 / (1 - 1/3) =
= 2/√3 : 2/3 = 2/√3 * 3/2 = √3
=> α = arctg √3 = π/3
ответ: графики функций углом пересекаются углом пересекаются пересекаются под углом π/3.