В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Shkolяr
Shkolяr
04.05.2022 03:24 •  Алгебра

решить задание подстановки


решить задание подстановки

Показать ответ
Ответ:
Гилязарт
Гилязарт
19.01.2020 00:44
Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х).
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624

Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.

2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34

34+34=68
0,0(0 оценок)
Ответ:
Trap00ra
Trap00ra
08.04.2022 08:00
f(x)=\sqrt{-x+3x-2}+\sqrt{ln(x+x^2)}
Область определения - это множество всех допустимых значений аргумента функции (иксов). Так как квадратный корень существует только для неотрицательных действительных чисел, получаем, что подкоренные функции будут больше либо равняться нулю, запишем это в систему, так как это должно быть одновременно:
\left \{ {{-x+3x-2\geq0} \atop {ln(x+x^2)\geq0}} \right. 

Теперь решаем полученную систему:
Сначала находим ОДЗ:
область определения логарифма от x это только положительные числа, то есть функция под логарифмом больше нуля:
ODZ:\ x+x^2\ \textgreater \ 0 Находим решения данного неравенства методом интервалов, то-есть сначала находим нули функции:
x+x^2=0
\\x(1+x)=0
\\x=0\ \ ili\ \ x=-1
y=x^2+x это квадратическая функция, график которой -парабола, ветками вверх, которая пересекает ось OX в точках (0;0) и (-1;0), ее вершина располагается в точке, которая рассчитывается следующим образом: (-\frac{b}{2a}; y(-\frac{b}{2a}))=(-\frac{1}{2};-\frac{1}{2}+\frac{1}{4})=(-\frac{1}{2};-\frac{1}{4})
Значит при x\in \{(-\infty;-1);(0;+\infty)\} функция будет больше нуля, то-есть ОДЗ: x\in \{(-\infty;-1);(0;+\infty)\}
Теперь решаем саму систему:
\left \{ {{-x+3x-2\geq0} \atop {ln(x+x^2)\geq0}} \right.
\\ \left \{ {{2x\geq2} \atop {x+x^2\geq e^0}} \right.
\\ \left \{ {{x\geq1} \atop {x+x^2\geq 1^*}} \right.
\\^*x^2+x\geq 1
\\ x^2+x-1\geq 0
Решаем данное неравенство также методом интервалов:
Nuli: x^2+x-1=0
\\x=\frac{-b+\sqrt{b^2-4ac}}{2a}\ \ \ \ \ ili\ \ \ \ \ x=\frac{-b-\sqrt{b^2-4ac}}{2a}
\\x=\frac{-1+\sqrt{1+4}}{2}\ \ \ \ \ \ \ ili \ \ \ \ \ \ x=\frac{-1-\sqrt{1+4}}{2}
\\x=\frac{-1+\sqrt{5}}{2} \ \ \ \ \ \ \ \ \ \ ili \ \ \ \ \ \ x=\frac{-1+\sqrt5}{2}
y=x^2+x-1 - это квадратическая функция, график которой парабола ветками вверх, которая пересекает ось OX в точках (\frac{-1-\sqrt{5}}{2};0) и (\frac{-1+\sqrt{5}}{2};0) Значит x^2+x-1\geq0 при x\in \{ (-\infty ;\frac{-1-\sqrt{5}}{2}];[\frac{-1+\sqrt{5}}{2}; +\infty)\}
Теперь собираем все корни неравенств и ОДЗ в одну систему:
\left \{ {{x\geq 1} \atop {x\in \{ (-\infty ;\frac{-1-\sqrt{5}}{2}];[\frac{-1+\sqrt{5}}{2}; +\infty)\}} \atop } \right. 
\\ODZ: x\in \{(-\infty;-1);(0;+\infty)\}

Получаем ответ:
OTBET: D(y): x\geq 1
График данной функции на картинке ниже
Найдите область определения функции f(x)=sqrt(-x+3x-2)+ sqrt(ln(x+x^2)) !
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота