Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Объяснение:
Решить систему уравнений
(x-5y)(x²-36)=0
x-y=4
Выразим х через у во втором уравнении:
х=4+у
Первые скобки приравняем к нулю, как один из множителей, дающих в результате ноль:
x-5y=0
Подставим выраженное х через у:
4+у-5у=0
4-4у=0
-4у= -4
у= -4/-4
у₁=1
Теперь подставляем значение у в уравнение первых скобок и вычисляем х:
х=5у
х=5*1
х₁=5
Теперь приравняем к нулю вторые скобки, как один из множителей, дающих в результате ноль:
x²-36=0
x²=36
х₂,₃=±√36
х₂= -6
х₃=6
-у=4-х
у=х-4
у₂=х₂-4
у₂= -6-4
у₂= -10
у₃=х₃-4
у₃=6-4
у₃=2
Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Объяснение:
Решить систему уравнений
(x-5y)(x²-36)=0
x-y=4
Выразим х через у во втором уравнении:
х=4+у
Первые скобки приравняем к нулю, как один из множителей, дающих в результате ноль:
x-5y=0
Подставим выраженное х через у:
4+у-5у=0
4-4у=0
-4у= -4
у= -4/-4
у₁=1
Теперь подставляем значение у в уравнение первых скобок и вычисляем х:
x-5y=0
х=5у
х=5*1
х₁=5
Теперь приравняем к нулю вторые скобки, как один из множителей, дающих в результате ноль:
x²-36=0
x²=36
х₂,₃=±√36
х₂= -6
х₃=6
x-y=4
-у=4-х
у=х-4
у₂=х₂-4
у₂= -6-4
у₂= -10
у₃=х₃-4
у₃=6-4
у₃=2
Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
n^3 - 3n^2m + 3nm^2 - m^3
2) (-2+k)^3 = (k-2)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
k^3 - 3k^2 * 2 + 3k * 2^2 - 2^3 = k^3 - 6k^2 + 12k - 8
3) (-x-y)^3 = -(x+y)^3
Вспоминаем формулу сокращенного умножения:
(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Получаем:
(-x-y)^3 = -((x+y)^3) = -(x^3 + 3x^2y + 3xy^2 + y^3) =
= -x^3 - 3x^2y - 3xy^2 - y^3
4) (-0.5+p)^3 = (p-0.5)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
p^3 - 0,5p^2 + 0,25p - 0,125